최근 정보의 폭발적인 증가로 인해 사용자에게 적합한 정보를 제공하기 위한 정보의 필터링이 매우 중요시 되고 있다. 한국과학기술정보연구원에서 운영하고 있는 학술정보서비스인 NDSL은 방대한 자료를 보유함에도 불구하고 사용자들은 검색 외에 자료 획득이 쉽지가 않다. 본 논문은 사용자에게 적합한 정보를 제공하기 위하여 키워드 특성을 활용한 서비스인 PIN(Profiling service In NDSL)을 제안한다. PIN은 키워드만을 가지고 검색하는 것이 아닌 사용자 본인 및 유사 사용자가 등록한 관심 키워드, 동시이용 키워드, 검색 키워드로 분석된 워드 클라우드를 제공하고 이를 통하여 사용자에게 맞춤형 논문, 보고서, 특허, 동향의 콘텐츠를 추천한다. 또한 콘텐츠를 보다 쉽게 접근하기 위하여 중복분류가 가능한 학술연구분류체계 기반 분류를 제공한다. 이를 검증하기 위해 NDSL의 축적된 2016년도의 국내논문의 데이터를 기반으로 분류별로 키워드를 추출하고 이를 통해 매칭 기반의 분류 모델을 만든 후 트레이닝 및 테스트를 거쳐 결과를 도출한다.
Keyword
추천; 분류; 키워드; 워드 클라우드; 학술분류체계; NDSL; Recommendation; Classification; Keyword; Word Cloud; the academic classification system