download0 view1,137
twitter facebook

공공누리This item is licensed Korea Open Government License

Title
Early Correction of N-Methyl-D-Aspartate Receptor Function Improves Autistic-like Social Behaviors in Adult Shank22/2 Mice
Author(s)
정창욱김은준강효진
Publication Year
2018-10-09
Abstract
BACKGROUND: Autism spectrum disorder involves neurodevelopmental dysregulations that lead to visible symp- toms at early stages of life. Many autism spectrum disorder–related mechanisms suggested by animal studies are supported by demonstrated improvement in autistic-like phenotypes in adult animals following experimental reversal of dysregulated mechanisms. However, whether such mechanisms also act at earlier stages to cause autistic-like phenotypes is unclear.
METHODS: We used Shank22/2 mice carrying a mutation identified in human autism spectrum disorder (exons 6 and 7 deletion) and combined electrophysiological and behavioral analyses to see whether early pathophysiology at pup stages is different from late pathophysiology at juvenile and adult stages and whether correcting early pathophysi- ology can normalize late pathophysiology and abnormal behaviors in juvenile and adult mice.
RESULTS: Early correction of a dysregulated mechanism in young mice prevents manifestation of autistic-like social behaviors in adult mice. Shank22/2 mice, known to display N-methyl-D-aspartate receptor (NMDAR) hypofunction and autistic-like behaviors at postweaning stages after postnatal day 21 (P21), show the opposite synaptic phenotype—NMDAR hyperfunction—at an earlier preweaning stage (wP14). Moreover, this NMDAR hyperfunction at P14 rapidly shifts to NMDAR hypofunction after weaning (wP24). Chronic suppression of the early NMDAR hyperfunction by the NMDAR antagonist memantine (P7–P21) prevents NMDAR hypofunction and autistic-like social behaviors from manifesting at later stages (wP28 and P56).
CONCLUSIONS: Early NMDAR hyperfunction leads to late NMDAR hypofunction and autistic-like social behaviors in Shank22/2 mice, and early correction of NMDAR dysfunction has the long-lasting effect of preventing autistic-like social behaviors from developing at later stages.
Keyword
Autism; Memantine; NMDA receptor; SHANK2; Synapse; Treatment
Journal Title
Biological Psychiatry
ISSN
0006-3223
Files in This Item:
There are no files associated with this item.
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
URI
https://repository.kisti.re.kr/handle/10580/14733
Export
RIS (EndNote)
XLS (Excel)
XML

Browse