download0 view1,058
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
Kamran Siddique
dc.contributor.author
김양우
dc.contributor.author
Zahid Akhtar
dc.contributor.author
김웅섭
dc.contributor.author
이행곤
dc.date.accessioned
2019-08-28T07:42:13Z
dc.date.available
2019-08-28T07:42:13Z
dc.date.issued
2017-09-19
dc.identifier.issn
2073-8994
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14720
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART89557087
dc.description.abstract
Anomaly detection systems, also known as intrusion detection systems (IDSs), continuously monitor network traffic aiming to identify malicious actions. Extensive research has been conducted to build efficient IDSs emphasizing two essential characteristics. The first is concerned with finding optimal feature selection, while another deals with employing robust classification schemes. However, the advent of big data concepts in anomaly detection domain and the appearance of sophisticated network attacks in the modern era require some fundamental methodological revisions to develop IDSs. Therefore, we first identify two more significant characteristics in addition to the ones mentioned above. These refer to the need for employing specialized big data processing frameworks and utilizing appropriate datasets for validating system’s performance, which is largely overlooked in existing studies. Afterwards, we set out to develop an anomaly detection system that comprehensively follows these four identified characteristics, i.e., the proposed system (i) performs feature ranking and selection using information gain and automated branch-and-bound algorithms respectively; (ii) employs logistic regression and extreme gradient boosting techniques for classification; (iii) introduces bulk synchronous parallel processing to cater computational requirements of high-speed big data networks; and; (iv) uses the Infromation Security Centre of Excellence, of the University of Brunswick real-time contemporary dataset for performance evaluation. We present experimental results that verify the efficacy of the proposed system
dc.language
eng
dc.relation.ispartofseries
SYMMETRY-BASEL
dc.title
Toward Bulk Synchronous Parallel-Based Machine Learning Techniques for Anomaly Detection in High-Speed Big Data Networks
dc.citation.endPage
15
dc.citation.number
9
dc.citation.startPage
1
dc.citation.volume
9
dc.subject.keyword
anomaly detection
dc.subject.keyword
network intrusion detection systems
dc.subject.keyword
bulk synchronous parallel
dc.subject.keyword
machine learning
dc.subject.keyword
big data
dc.subject.keyword
ISCX-UNB dataset
dc.subject.keyword
DARPA
dc.subject.keyword
KDD Cup 99
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse