download0 view1,108
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
홍승태
dc.contributor.author
장재우
dc.contributor.author
박경석
dc.contributor.author
임채덕
dc.date.accessioned
2019-08-28T07:42:12Z
dc.date.available
2019-08-28T07:42:12Z
dc.date.issued
2017-04-17
dc.identifier.issn
0916-8532
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14718
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART78519451
dc.description.abstract
To analyze large-scale data efficiently, studies on Hadoop, one of the most popular MapReduce frameworks, have been actively done. Meanwhile, most of the large-scale data analysis applications, e.g., data clustering, are required to do the same map and reduce functions repeatedly. However, Hadoop cannot provide an optimal performance for iterative MapReduce jobs because it derives a result by doing one phase of map and reduce functions. To solve the problems, in this paper, we propose a new efficient resource management framework for iterative MapReduce processing in large-scale data analysis. For this, we first design an iterative job state-machine for managing the iterative MapReduce jobs. Secondly, we propose an invariant data caching mechanism for reducing the I/O costs of data accesses. Thirdly, we propose an iterative resource management technique for efficiently managing the resources of a Hadoop cluster. Fourthly, we devise a stop condition check mechanism for preventing unnecessary computation. Finally, we show the performance superiority of the proposed framework by comparing it with the existing frameworks.
dc.language
eng
dc.relation.ispartofseries
IEICE TRANSACTIONS on Information and Systems
dc.title
A New Efficient Resource Management Framework for Iterative MapReduce Processing in Large-Scale Data Analysis
dc.citation.endPage
717
dc.citation.number
4
dc.citation.startPage
704
dc.citation.volume
E100-D
dc.subject.keyword
large-scale data analysis
dc.subject.keyword
iterative data processing framework
dc.subject.keyword
MapReduce
dc.subject.keyword
Hadoop
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse