download0 view1,103
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
오흥선
dc.contributor.author
정유철
dc.date.accessioned
2019-08-28T07:42:05Z
dc.date.available
2019-08-28T07:42:05Z
dc.date.issued
2017-10-02
dc.identifier.issn
2287-9099
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14642
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201727038079760
dc.description.abstract
The narrow-down approach, separately composed of search and classification stages, is an effective way of dealing with large-scale hierarchical text classification. Recent approaches introduce methods of incorporating global, local, and path information extracted from web taxonomies in the classification stage. Meanwhile, in the case of utilizing path information, there have been few efforts to address existing limitations and develop more sophisticated methods. In this paper, we propose an expansion method to effectively exploit category path information based on the observation that the existing method is exposed to a term mismatch problem and low discrimination power due to insufficient path information. The key idea of our method is to utilize relevant information not presented on category paths by adding more useful words. We evaluate the effectiveness of our method on state-of-the art narrow-down methods and report the results with in-depth analysis.
dc.language
eng
dc.relation.ispartofseries
Journal of Information Science Theory and Practice
dc.title
Enhancing the Narrow-down Approach to Large-scale Hierarchical Text Classification with Category Path Information
dc.citation.startPage
17
dc.identifier.url
http://www.ndsl.kr/ndsl/commons/util/ndslOriginalView.do?dbt=JAKO&cn=JAKO201727038079760
dc.subject.keyword
Hierarchical text classification
dc.subject.keyword
Query expansion
dc.subject.keyword
Narrow-down approach
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse