download0 view1,060
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
박치현
dc.contributor.author
안재균
dc.contributor.author
오민
dc.contributor.author
유석종
dc.contributor.author
윤영미
dc.date.accessioned
2019-08-28T07:42:03Z
dc.date.available
2019-08-28T07:42:03Z
dc.date.issued
2017-11-01
dc.identifier.issn
0957-4174
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14617
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART78021866
dc.description.abstract
Alzheimer’s disease (AD) is a genetically complex neurodegenerative diseases and its pathological mechanismhas not been fully discovered. The mechanism of AD can be inferred by elucidating how molecularentities are interacting on the pathway level and how some pathways collectively influence the occurrenceof the disease. Such an analysis is considerably complex and cannot be manually performed byexperts. It can be solved by integrating huge heterogeneous dataset and systematically building an intelligentsystem which model molecular network and analyze the causality. Here, we present a novel methodto construct an optimized AD-specific differential gene network by integrating a high-confidence interactomeand gene expression data. In order to consider an epigenetic factor, we identified differentiallymethylated genes in AD and the results were projected on the network for mechanism analysis. Throughdiverse topological analysis and functional enrichment tests, we experimentally demonstrated that theseveral potential genes and sub networks were significantly related with AD and they could be used toelucidate the molecular mechanism. Taken the experimental results and literature studies together, wenewly discovered that ribosomal process-related genes and DNA methylation might play an importantrole in AD. The proposed system is applicable not only to AD but also to various complex genetic diseasemodels that require new molecular mechanism analysis based on network
dc.language
eng
dc.relation.ispartofseries
EXPERT SYSTEMS WITH APPLICATIONS
dc.title
Systematic identification of differential gene network to elucidate Alzheimer's disease
dc.citation.number
1
dc.citation.startPage
249
dc.citation.volume
85
dc.subject.keyword
Genetic network construction
dc.subject.keyword
Omics data integration
dc.subject.keyword
Network analysis
dc.subject.keyword
Alzheimer's disease
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse