download0 view1,057
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
H.J. Jeong
dc.contributor.author
이종숙
dc.contributor.author
M. Ji
dc.contributor.author
M. Ryu
dc.contributor.author
S. Ye
dc.contributor.author
Y. Cho
dc.date.accessioned
2019-08-28T07:42:02Z
dc.date.available
2019-08-28T07:42:02Z
dc.date.issued
2017-06-28
dc.identifier.issn
1741-1106
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14613
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART88340048
dc.description.abstract
Recent developments in information and communication networks as well as the popularity of smartphones have been contributing to a geometrical increase in Internet traffic. In relation to this, this study aims to collect, detect, measure and analyse the DDoS attacks typical of increasing security incidents on the Internet and network attacks. To this end, a large volume of normal traffic, coming in through an internal LAN of a university, and anomalous traffic including DDoS attacks using an ATMSim analysis package operating on the basis of network flow information, was generated. The self-similarity estimation techniques were used to analyse the behavior of the collected and generated normal and anomalous traffic. This information was then used to prove graphically and quantitatively that the analysis reveals a great difference between the normal traffic and the anomalous traffic in terms of self-similarity.
dc.language
eng
dc.relation.ispartofseries
International Journal of Web and Grid Services
dc.title
ATMSim: a Hadoop and self-similarity-based simulator for collecting, detecting, measuring and analysing anomalous traffic
dc.citation.endPage
350
dc.citation.number
3
dc.citation.startPage
334
dc.citation.volume
13
dc.subject.keyword
Anomalous traffic
dc.subject.keyword
Hadoop
dc.subject.keyword
Stochastic self-similar process
dc.subject.keyword
ATMSim
dc.subject.keyword
DDoS attack
dc.subject.keyword
Big data
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse