download0 view1,131
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
박주원
dc.contributor.author
김은혜
dc.date.accessioned
2019-08-28T07:42:02Z
dc.date.available
2019-08-28T07:42:02Z
dc.date.issued
2017-11-01
dc.identifier.issn
0920-8542
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14612
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART78984346
dc.description.abstract
Several fields of science have demanded large-scale workflow support, which requires thousands of CPU cores or more. In order to support such large-scale scientific workflows, high capacity parallel systems such as supercomputers are widely used. In order to increase the utilization of these systems, most schedulers use backfilling policy: Small jobs are moved ahead to fill in holes in the schedule when large jobs do not delay. Since an estimate of the runtime is necessary for backfilling, most parallel systems use user's estimated runtime. However, it is found to be extremely inaccurate because users overestimate their jobs. Therefore, in this paper, we propose a novel system for the runtime prediction based on workload-aware clustering with the goal of improving prediction performance. The proposed scheme develops support vector regression model by the clusters resulted from a self-organizing map and hierarchical clustering analysis with the feature space reduced by factor analysis to reinforce prediction accuracy. In the experiments, we use workload logs on parallel systems (i.e., iPSC, LANL-CM5, SDSC-Par95, SDSC-Par96, and CTC-SP2) to evaluate the effectiveness of our approach. Comparing with other techniques, experimental results show that the proposed method improves the accuracy up to 69.08%.
dc.language
eng
dc.relation.ispartofseries
The Journal of Supercomputing
dc.title
Runtime prediction of parallel applications with workload-aware clustering
dc.citation.endPage
4651
dc.citation.number
11
dc.citation.startPage
4635
dc.citation.volume
73
dc.subject.keyword
Runtime prediction
dc.subject.keyword
workload-aware clustering
dc.subject.keyword
support vector regression
dc.subject.keyword
machine learning approach
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse