download0 view1,194
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
정한조
dc.contributor.author
김재수
dc.contributor.author
김용기
dc.date.accessioned
2019-08-28T07:41:56Z
dc.date.available
2019-08-28T07:41:56Z
dc.date.issued
2016-06-09
dc.identifier.issn
1386-7857
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14545
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART76022758
dc.description.abstract
Korean National Science & Technology Information Service (NTIS) provides a service of evaluating national R&D projects and providing such evaluated national R&D projects along with their participating researcher information. It also provides a service of recommending and selecting evaluation committees for the R&D projects. Transparency is an important aspect that should be ensured on the evaluation process of the national R&D projects. Thus, the recommending unfamiliar evaluation committees with the participants of the R&D projects are one of the important aspects that can ensure the transparency for the evaluation process. In this paper, we present an evaluation-committee recommendation system using an online detection method of researcher connections by a partitioning-based clustering algorithm and random walks. The clustering algorithm enables us to partition the network to number of small graphs that can be processed via random walks. Then, we can rank the connection weight of each suspicious researcher according to a researcher in charge of a R&D project and we can exclude the researchers having higher connection weight from the evaluation committee of the R&D project. In addition, we also present a text-data refinement and entity identification method using Jaro-Winkler distance algorithm to construct more precise researcher network.
dc.language
eng
dc.relation.ispartofseries
Cluster Computing: The Journal of Networks, Software Tools and Applications
dc.title
An evaluation-committee recommendation system for national R&D projects using social network analysis
dc.citation.endPage
930
dc.citation.number
2
dc.citation.startPage
921
dc.citation.volume
19
dc.subject.keyword
Social Network Analysis
dc.subject.keyword
random walks
dc.subject.keyword
community detection
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse