download0 view1,094
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
김서영
dc.contributor.author
김윤희
dc.contributor.author
최지은
dc.date.accessioned
2019-08-28T07:41:55Z
dc.date.available
2019-08-28T07:41:55Z
dc.date.issued
2016-09-01
dc.identifier.issn
1386-7857
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14526
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART76443555
dc.description.abstract
As the rapid advancement and diversity in the computing systems, it is demanding to take the most robust scheduling algorithm that guarantee an optimized performance to execute manifold applications on largescale heterogeneous computing environments. This paperpresent an adaptive application-aware job scheduling optimization strategy for large-scale high throughput computing in heterogeneous infrastructures. The proposed scheduling optimization method is built on two main concepts. First, it provides application-aware job distribution weights through empirical data in large-scale heterogeneous infrastructures. Here we adopt the concept of weight, which represent the ratio of tasks that will be computed on each resource. The weights can vary in terms of application type and are optimized until the system get in steady status. Secondly, it offers an adaptive control phase that is invoked by the weight adjustment and resource scaling feature. The feedback data frommonitoring module is forwarded to the control phase in order to adjust weights and over-provisioning ratio, and result in enhancing overall balance between performances and utilization of system. The experimental evaluation with the four realistic workload patterns demonstrates that, when comparedto the core-based scheme which distributes tasks in proportions of each resource’s number of cores, the use of our optimization method can achieve 62% better average throughput, 43% shorter average queueing time, and 38% better average utilization of the entire resources in diverseinfrastructure environments by harnessing our adaptive module.
dc.language
eng
dc.title
Adaptive application-aware job scheduling optimization strategy in heterogeneous infrastructures
dc.citation.endPage
1526
dc.citation.number
3
dc.citation.startPage
1515
dc.citation.volume
19
dc.subject.keyword
Job scheduling optimization
dc.subject.keyword
Adaptive evaluation
dc.subject.keyword
Application-aware
dc.subject.keyword
High-throughput computing
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse