download0 view1,407
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
신설은
dc.contributor.author
강지순
dc.contributor.author
조영순
dc.date.accessioned
2019-08-28T07:41:51Z
dc.date.available
2019-08-28T07:41:51Z
dc.date.issued
2016-04-02
dc.identifier.issn
0033-4553
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14504
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART76208157
dc.description.abstract
We develop an ensemble data assimilation system using the 4-dimensional Local Ensemble Transform Kalman Filter (LEKTF) for a global hydrostatic Numerical Weather Prediction (NWP) model formulated on the cubed-sphere. Forecast-analysis cycles run stably and thus provide newly updated initial states for the model to produce ensemble forecasts every 6 hours. Performance of LETKF implemented to the global NWP model is verified using the ECMWF reanalysis data and conventional observations. Global mean values of bias and root mean square difference are significantly reduced by the data assimilation. Besides, statistics of forecast and analysis converge well as the forecast-analysis cycles are repeated. These results suggest that the combined system of LETKF and the global NWP formulated on the cubed-sphere shows a promising performance for operational uses.
dc.language
eng
dc.relation.ispartofseries
Pure and Applied Geophysics
dc.title
The Local Ensemble Transform Kalman Filter (LETKF) with a Global NWP Model on the Cubed Sphere
dc.citation.endPage
16
dc.citation.startPage
1
dc.subject.keyword
Ensemble data assimilation
dc.subject.keyword
Local ensemble transform Kalman filter (LEKTF)
dc.subject.keyword
Numerical weather prediction (NWP)
dc.subject.keyword
Atmospheric global model (AGM)
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse