download0 view1,099
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
이준학
dc.contributor.author
이도헌
dc.date.accessioned
2019-08-28T07:41:51Z
dc.date.available
2019-08-28T07:41:51Z
dc.date.issued
2016-01-29
dc.identifier.issn
0006-291X
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14496
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART74852159
dc.description.abstract
Understanding how different genomic mutational landscapes in patients with cancer lead to different responses to anticancer drugs is an important challenge for realizing precision medicine for cancer. Many studies have analyzed the comprehensive anticancer drug-response profiles and genomic profiles of cancer cell lines to identify the relationship between the anticancer drug response and genomic alternations. However, few studies have focused on interpreting these profiles with a network perspective. In this work, we analyzed genomic alterations in cancer cell lines by considering which interactions in the signaling pathway were perturbed by mutations. With our interaction-centric approach, we identified novel interaction/drug response associations for two drugs (afatinib and ixabepilone) for which no gene-centric association could be found. When we compared the performance of classifiers for predicting the responses to 164 drugs, the classifiers trained with interaction-centric features outperformed the classifiers trained with gene-centric features, despite the smaller number of features (p-value = 2.0 × 10−3). By incorporating the interaction information from signaling pathways, we revealed associations between genomic alterations and drug responses that could be missed when using a gene-centric approach.
dc.language
eng
dc.relation.ispartofseries
Biochemical and Biophysical Research Communications
dc.title
Association analysis of the perturbation of interactions in biological pathways and anticancer drug activity
dc.citation.endPage
143
dc.citation.number
5
dc.citation.startPage
137
dc.citation.volume
470
dc.subject.keyword
Drug response prediction
dc.subject.keyword
signaling pathway
dc.subject.keyword
domain-domain interaction
dc.subject.keyword
precision medicine
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse