download0 view1,041
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
오흥선
dc.contributor.author
정유철
dc.date.accessioned
2019-08-28T07:41:50Z
dc.date.available
2019-08-28T07:41:50Z
dc.date.issued
2015-09-30
dc.identifier.issn
1532-0464
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14486
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART74333099
dc.description.abstract
Utilizing external collections to improve retrieval performance is challenging research because various test collections are created for different purposes. Improving medical information retrieval has also gained much attention as various types of medical documents have become available to researchers ever since they started storing them in machine processable formats. In this paper, we propose an effective method of utilizing external collections based on the pseudo relevance feedback approach. Our method incorporates the structure of external collections in estimating individual components in the final feedback model. Extensive experiments on three medical collections (TREC CDS, CLEF eHealth, and OHSUMED) were performed, and the results were compared with a representative expansion approach utilizing the external collections to show the superiority of our method
dc.language
eng
dc.relation.ispartofseries
Journal of Biomedical Informatics
dc.title
Cluster-based Query Expansion using External Collections in Medical Information Retrieval
dc.citation.endPage
79
dc.citation.startPage
70
dc.citation.volume
50
dc.subject.keyword
Query expansion
dc.subject.keyword
External collections
dc.subject.keyword
Language models
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse