download0 view892
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
최지은
dc.contributor.author
김윤희
dc.contributor.author
김서영
dc.contributor.author
안윤선
dc.contributor.author
최재영
dc.date.accessioned
2019-08-28T07:41:47Z
dc.date.available
2019-08-28T07:41:47Z
dc.date.issued
2015-06-03
dc.identifier.issn
1386-7857
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14455
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=NART74712637
dc.description.abstract
Cloud computing provides on-demand resource provisioning and scalable resources dynamically for the efficient use of computing resources. Scientific applications recently need a very large number of loosely coupled tasks to be handled efficiently. In response, current computing environments often consist of heterogeneous resources such as cloud computing. To effectively use cloud resources, auto-scaling methods that consider diverse metrics such as CPU utilization and costs of resource usage have been studied widely. However it still remains a challenge to automatically and timely allocate resources such that deadline violation and application types are considered. In this paper, we propose auto-scaling methods that consider specific conditions such as application types, task dependency, user-defined deadlines and data transfer times within a hybrid computing infrastructure. Our hybrid computing infrastructure consists of local cluster and cloud resources using HTCaaS. We observe noticeable improvements in performance when our auto-scaling methods for bag-of-tasks and workflow applications is applied.
dc.language
eng
dc.relation.ispartofseries
Cluster Computing
dc.title
VM auto-scaling methods for high throughput computing on hybrid infrastructure
dc.citation.endPage
1073
dc.citation.number
3
dc.citation.startPage
1063
dc.citation.volume
18
dc.subject.keyword
Auto-scaling
dc.subject.keyword
Hybrid infrastructure
dc.subject.keyword
Cloud computing
dc.subject.keyword
Bag-of-tasks
dc.subject.keyword
Workflows
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse