download0 view1,128
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.contributor.author
신성호
dc.contributor.author
이문용
dc.contributor.author
정한민
dc.date.accessioned
2019-08-28T07:41:46Z
dc.date.available
2019-08-28T07:41:46Z
dc.date.issued
2015-01-31
dc.identifier.issn
1976-7277
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/14447
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/article/articleSearchResultDetail.do?cn=JAKO201508449474247
dc.description.abstract
Natural Language Question Answering (NLQA) and Prescriptive Analytics (PA) have been identified as innovative, emerging technologies in 2015 by the Gartner group. These technologies require knowledge bases that consist of data that has been extracted from unstructured texts. Every business requires a knowledge base for business analytics as it can enhance companies’ competitiveness in their industry. Most intelligent or analytic services depend a lot upon on knowledge bases. However, building a qualified knowledge base is very time consuming and requires a considerable amount of effort, especially if it is to be manually created. Another problem that occurs when creating a knowledge base is that it will be outdated by the time it is completed and will require constant updating even when it is ready in use. For these reason, it is more advisable to create a computerized knowledge base. This research focuses on building a computerized knowledge base for business using a supervised learning and rule-based method. The method proposed in this paper is based on information extraction, but it has been specialized and modified to extract information related only to a business. The business knowledge base created by our system can also be used for advanced functions such as presenting the hierarchy of technologies and products, and the relations between technologies and products. Using our method, these relations can be expanded and customized according to business requirements.
dc.language
eng
dc.relation.ispartofseries
KSII Transactions on Internet and Information Systems
dc.title
Building a Business Knowledge Base by a Supervised Learning and Rule-Based Method
dc.citation.number
1
dc.citation.startPage
14
dc.citation.volume
9
dc.identifier.url
http://www.ndsl.kr/ndsl/commons/util/ndslOriginalView.do?dbt=JAKO&cn=JAKO201508449474247
dc.subject.keyword
Information extraction
dc.subject.keyword
business knowledge base
dc.subject.keyword
structural support vector machine
dc.subject.keyword
named entity recognition
dc.subject.keyword
relation extraction
Appears in Collections:
7. KISTI 연구성과 > 학술지 발표논문
Files in This Item:
There are no files associated with this item.

Browse