download0 view866
twitter facebook

공공누리This item is licensed Korea Open Government License

dc.date.accessioned
2018-11-02T04:57:10Z
dc.date.available
2018-11-02T04:57:10Z
dc.date.issued
2018-01
dc.identifier.other
LA0706
dc.identifier.uri
https://repository.kisti.re.kr/handle/10580/11443
dc.identifier.uri
http://www.ndsl.kr/ndsl/search/detail/report/reportSearchResultDetail.do?cn=TRKO201800002497
dc.description
funder : 과학기술정보통신부
dc.description
funder : Ministry of Science and ICT
dc.description.abstract
본 연구과제의 목적은 HPC(High Performance Computing) 및 데이터 기반의 질병 연구를 위한 분석 기술의 개발임. 이를 위해, 본 연구과제는 당해 연도에 다음과 같이 수행되었음.

○ 노인성 치매 대응을 위한 치매 데이터 수집 및 네트워크 구축
- 생물학적 데이터 수집 및 네트워크 구축
- 치매 원인 규명을 위한 유전체분석 기술
○ 생물학적 네트워크 분석기술 연구개발
- 생물학적 네트워크 분석(유사매칭기술)
- 네트워크 분석기반의 바이오 마커 및 관련 핵심 화합물 발굴기술
○ 치매 연구 지원 시스템 개발 및 활용연구 지원

(출처 : 보고서 초록 5p)
dc.description.abstract
Ⅳ. Results of the research projects
○ Significance of data network analysis for dementia
- Development of a biological network similarity matching algorithm that has 160% faster performance compared to a previous SAGA method
- In-vitro experimental validation of in-silico candidate compounds that interact with target protiens
- Publication of four research papers on the top 20% international journals

○ Usefulness of data network analysis for dementia
- Improvement of entity name recognition technology by deep learning models (CNN LSTM CRF)
- Development of a genomic data pre-processing system for big data analysis based on multi-node execution environment (8.41 times faster than single-node execution environment)
- Identification of brain-specific 1,287 somatic variants in dementia patients (including more than two variants that are highly associated with dementia pathogenesis)
- Completion of trio whole genome data analysis using trio data of 201 autism families and identification of genetic variants

○ Development and application of a research support prototype system
- Development of an expression/network analysis platform (AlzNAVi) for dementia based on graph database that integrate nine public DBs
- User satisfaction evaluation for the AlzNAVi (the average score is 88.1 from 64 users)
- Identification of 15 candidate genes for Alzheimer disease based on big data analysis and evaluation of 4 genes that induce hyperphosphorylation of Tau protein

(출처 : SUMMARY 10p)
dc.publisher
한국과학기술정보연구원
dc.publisher
Korea Institute of Science and Technology Information
dc.title
초고성능컴퓨팅 기반 건강한 고령사회 대응 빅데이터 기술개발
dc.title.alternative
Development of biomedical data network analysis technology based on high performance computing for dementia researches
dc.identifier.doi
10.23000/TRKO201800002497
dc.identifier.localId
TRKO201800002497
dc.identifier.url
http://www.ndsl.kr/ndsl/commons/util/ndslOriginalView.do?dbt=TRKO&cn=TRKO201800002497
dc.subject.keyword
치매 탐색
dc.subject.keyword
치매 데이터 네트워크
dc.subject.keyword
데이터 네트워크
dc.subject.keyword
데이터 마이닝
dc.subject.keyword
바이오-메디컬 빅데이터
dc.subject.keyword
Dementia Screening
dc.subject.keyword
Dementia Data Network
dc.subject.keyword
Data Network
dc.subject.keyword
Data Mining
dc.subject.keyword
Bio-Medical Bigdata
dc.type.local
단계보고서
dc.identifier.koi
KISTI2.1015/RPT.TRKO201800002497
Appears in Collections:
7. KISTI 연구성과 > 연구보고서 > 2018
Files in This Item:
There are no files associated with this item.

Browse