

Chapter 0

Introduction to
KMI-R1

 2

1. Overview

K*Grid project is an initiative in Grid researches supported by MIC (Ministry of

Information and Communication), Republic of Korea and started in 2002.

KISTI (Korea Institute of Science and Technology Information) plays a leading

role in building and operating a production quality Grid infrastructure needed

for large-scale collaborative Grid researches including scientific and business

applications.

KMI (K*Grid Middleware Initiative) is an integrated Grid middleware package

which makes scientists able to set easily the computational Grid and data Grid

environment for their researches and harness all the advantages of Grid in

their fingertips. KMI is developed for building K*Grid infrastructure, but not

limited for it.

Figure 0-1 Architecture of KMI-R1

KMI is an integration of the MoreDream Toolkit (KISTI), which contains

GRASP (Grid Resource Allocation Services Package) for Grid resource

allocation service, GAIS (Grid Advanced Information System) for Grid

information service and MPICH-GX for parallel computing service, with some

key software packages such as Globus Toolkit® (ANL), KGridCA System

 3

(KISTI) for Grid CA Service, AIService (CNU) for Grid accounting service,

SRB (Storage Resource Broker, SDSC) and KMI-GridSphere (GridLab)

The detailed descriptions of each system in KMI are in the following chapters.

 4

Chapter 1

MoreDream

 5

1. GRASP

1.1 Introduction

The problem of Grid resource allocation is concerning about delivering the

users distributed resources with computing powers, data storage capacity,

network connectivity, etc. The Managed job service in Globus toolkit 3.x (GT3)

is the service to be used to run the job on a remote resource. However, in

order to build more useful Grid, there should be added some user-friendly

features and advanced resource allocation techniques including resource

brokering, scheduling, job monitoring, and so forth. To meet this requirement

in Grid resource management area, we designed and implemented a

resource allocation system named GRASP(Grid Resource Allocation Services

Package), which is to let users to submit their jobs in more efficient and

intelligent manner to the Grid resources. The services of GRASP were

implemented based on the OGSI specification implementation of GT3 as well

as other services in MoreDream. Followings are brief introduction of GRASP

functionalities.

1.1.1 Architecture and Components of GRASP

1.1.1.1 Overview

GRASP supports scientific applications with the high performance computing

features such as MPI, high throughput computing features such as parametric

studies, and data intensive features. GRASP can handle three kinds of job

type: SINGLE, XMPI, and HTC. SINGLE is a simple job to use only one

computing node. XMPI is an MPI job which can be run over multiple

 6

resources. Lastly, HTC is a job for HTC applications such as parametric study.

In Both XMPI and HTC job case, GRASP co-allocates multiple resources to

the job even though the resources are remotely distributed. To support data

intensive features, we added the feature to automatically stage in files from

SRB server and stage out the files to SRB server

Furthermore, we have designed the job description language, named JRDL

(Job and Resource Description Language) to overcome the limitation of the

GT3. RSL2, the GT3 job description language, just describes job

specifications rather than resource specifications such as resource preference.

RSL2 is also not considering about co-allocation. Therefore, we have

proposed JRDL to meet both requirements for the job and resource’s

preference. The resource preference part is used in matchmaking step in Grid

scheduling service (GSS). JRDL is designed based on XML schema.

GRASP is composed of four useful services needed to allocate the resources

in Grid as illustrated in Figure 1-1. Firstly, the resource brokering is done by

Grid scheduling service (GSS). This service finds out resources from the

index service which are fit to a user’s job and then reserve the resources in

advance through Resource reservation service (RSS). To select proper

resources it performs matchmaking between the resource specification from

the user and the job/user specification preferred by the resource administrator.

And then the resources are allocated to the job. Secondly, Job submission

service (JSS) does co-allocation of resources and co-monitoring of the job.

Co-allocation in GRASP makes it possible the job submission to the multiple

distributed resources simultaneously. And co-monitoring allows the user to

monitor her job flow. Lastly, Resource manager service (RMS) authenticates

the user for the job execution on a local resource and submits the job to the

local batch queuing system such as PBS. RMS should get the permission to

allocate resource from RRS before submitting the job.

Followings are the main features of GRASP, job types that is handled by

GRASP and job statuses defined in GRASP. The explanation of each service,

 7

JSS (Job Submission Service), GSS (Grid Scheduling Service), RMS

(Resource Manager Service), and RRS (Resource Reservation Service), will

be followed after this overview section.

Figure 1-1 Architecture of GRASP

A. Main Features

· All services are OGSI-compliant Grid services.

· GRASP supports three kinds of job type: SINGLE, XMPI, and HTC.

SINGLE is a simple job which uses only one computing node. XMPI is

an MPI job which can be run over multiple resources. Lastly, HTC is a

job for high throughput computing such as parametric study.

· Multiple resources can be co-allocated to a job even though the

resources are remotely distributed.

 8

· Scheduler can automatically select resources by matchmaking

process.

· Job can reserve resources in advance.

· The input files can be staged in from SRB server and the output files

can be staged out to SRB server automatically.

· We provide JRDL (Job and Resource Description Language) as a

general language to describe a job and user preferences required

allocating resources for a job in Grid environment.

· We bring client tools for job creating, submission, controlling, and

monitoring. They provide three user interfaces having same

functionality: a command line interface, a graphic user interface, and

web interface.

B. Job Type

We are supporting three kinds of job type: SINGLE, XMPI, and HTC.

· SINGLE: It is a simple job which uses only one computational node

(e.g. simple script for pre/post processing).

· XMPI: It is an MPI job which uses multiple resources to run even

though resources are remotely distributed. Each resource could have

several nodes.

· HTC: It is a job which uses multiple resources to run and have no

communication between each of all subjobs (e.g. parametric study).

Each subjob must be a SINGLE job.

C. Job Status

(a) Job Submission Status

Job submission service manages the status of job submission. The Status has

following information:

· State of job

 9

· All subjobs’ statuses

· Fault message.

(b) Job State

· "Unsubmitted": JRDL is unsubmitted to Job submission service.

· "Scheduling": Job is scheduling to find proper resources at Grid

scheduling service.

· "Pending": Job is pending even though the subjob is submitted to

Resource manager service.

· "Active": Job is active.

· "Suspended": Job is suspended.

· "Done": Job is done.

· "Failed": Job is failed.

(c) Subjob Status

Resource manager service manages the statuses of subjobs. Each status has

following information:

· Subjob id

· State of subjob state

· Execution time of subjob: start time and end time of job

· Allocation information of subjob: allocated resources’ address

· Fault message.

(d) Subjob State

· "Unsubmitted": Subjob is unsubmitted to ResourceManagerService.

· "StageIn": Subjob is staging in the files to need to execute.

· "Waiting": Subjob is waiting for its requested execution time to be

reached

· "Pending": Subjob is pending even though the subjob is submitted to

the local job manager

 10

· “XMPI_init”: XMPI subjob is initializing

· "Active": Subjob is active.

· "StageOut": Subjob is staging out the files to result from executing

· "Suspended": Subjob is suspended.

· "Done": Subjob is done.

· "Failed": Subjob is failed.

1.1.1.2 JSS (Job Submission Service)

A. Key concepts

JSS is a Grid service to enable a job to submit to the resources in Grid

testbed and enable a user to monitor the status of submitted job. We provide

JRDL language to describe the job, which is "an atomic task" of a workflow

specification or other kinds of a complex, multi-step application. The service

has the status of job submission and the requested JRDL which are provided

as service data.

B. Architecture

The job submission process is illustrated in Figure 1-2. When JSS receives

the JRDL, the service can determine resources by GSS which is a Grid

service to find out resources which are fit to the user's job from information

provider and make a reservation to RRS on each resource. User could the

resources manually by specifying the address and local job manager type of

resources to JRDL. If the resources are decided, the job is divided into

subjobs, then that are co-allocated to RMS on each resource.

 11

Figure 1-2 Job Submission Process

1.1.1.3 GSS (Grid Scheduling Service)

A. Key concepts

Grids consist of a large variety of services which reveal accessibilities to

resources and the access to a resource is under control of the policies of the

resource owners. Besides, complicate bottom layer Grid fabric should be

hidden from Grid users. Therefore, the scheduling service which coordinates

between various resources and higher level consumers satisfying policies on

both sides is acutely needed in the Grid computing environment. The GSS in

GRASP was designed and implemented to do scheduling in such a complex

Grid infrastructure for the jobs from various applications.

Major purpose of the GSS is to find resources which meet user’s

requirements and select resources according to a scheduling algorithm. In

order to discover proper resources the GSS queries an information service,

 12

GAIS in MoreDream, with resource specification for the job. The GSS does

screening process to choose the resources which meet minimal requirements

to execute the job.

And then, with the filtered resources, selection is done by the specific

scheduling policy. The Grid scheduling service can have several scheduling

plugins which implement application-specific policies or scheduling algorithms.

The plugin selected by the user will be applied to select most appropriate

resources.

Once the selection process is done by a scheduling plugin, the service tries

reservations to the selected resources for the time that user have specified in

JRDL file. If the reservation fails, the service gains recent information about

available resources from the reservation services, does scheduling again, and

then retries reservation to the resources. These processes are repeated until

the selected resources are confirmed with reservation IDs.

B. Architecture

The architecture of GSS is described in Figure 1-3. Following paragraphs

explains each parts of GSS.

The GSS has the factory mechanism i.e. the GSS factory service creates a

GSS instance and the created instance deals with the requested job until it

gains resources. GSS acquires candidate resources thru Resource Broker. In

this step, Resource Broker queries information of available resources to GAIS

filtering out the unfit resources.

The scheduling plugin which was specified in the job request takes the job

and resource candidates. And then it makes a map between the job and

resources according to the scheduling policy. Scheduling plugin can have

policies or selection algorithm. GSS has the default plugin, in which a

opportunistic load balancing (OLB) algorithm is implemented. OLB assigns

each task in the job, in arbitrary order, to the next available node, regardless

of the task’s expected execution time on that resource. In the distribution of

 13

GRASP package, HTC plugin and MPI plugin is included for each type of jobs

in addition to the default plugin.

The Reservation Agent takes selected by scheduling plugin and tries to

reserve resources for the certainty of the schedule. When the reservation

trials are not complete, it asks available node resource capacity to the

resource candidates and repeats scheduling and reservation keeping

succeeded reservations.

Figure 1-3 Architecture of GSS

1.1.1.4 RMS (Resource Manager Service)

A. Key concepts

RMS is a Grid service to enable subjobs to allocate resources and be

executed by the local batch scheduler such as PBS. Resources are

computational nodes to be managed by the local batch scheduler. The service

 14

has the statuses of subjobs which are provided as service data.

B. Architecture

Local resource allocation and execution process is illustrated in Figure 1-4.

When RMS receives the execution request for subjobs, the service must

allocate local resources. This service can allocate resources when the service

gets the permission from RRS, which has established the reservation by the

request of Grid scheduling service. RMS then invokes JMS (Job Manager

Script) to submit the subjobs to designated local batch scheduler. While the

subjobs are running, the service manages the status of each subjob. Because

RMS is managed by Job submission service, this service notify the status of

subjob to JSS whenever the status changes.

Figure 1-4 Local Resource Allocation and Execution Process

JMS (Job Manger Script)

JMS module processes file stage-in, file stage-out, submit, poll, and kill

requests instead of RMS. Job manager script is written in PHP language, and

 15

can be executed by the java Runtime.exec() method. The requests from the

RMS is delivered to JMS as an XML document form. JMS parses the XML

and processes the requested function.

JMS is installed under $GLOBUS_LOCATION/libexec/grasp-jms-php

JMS can be executed manually in a command line prompt:

 $ jms -file < filename>

The filename is a path name of an XML file, which has the format:
<xml>
<action>ACTION</action>
<manager>MANAGER</manager>
<jobtype>JOBTYPE</jobtype>
...
</xml>

where,
ACTION = proxy_relocate | submit | poll | stage_in |

stage_out
MANAGER = pbs | fork
JOBTYPE = single | htc | xmpi

File stage-in and stage-out actions use globus-url-copy command to copy files

between local file system and remote server. To use PBS manager, OpenPBS

must be installed in the local system. The configuration file (config.php) sets

up these path information.

1.1.1.5 RRS (Resource Reservation Service)

A Grid resource is composed of many kinds of resources, such as CPUs and

memory, storage space, network bandwidth, special purpose instruments.

RRS manages reservation of resources which are able to be reserved on the

Grid. As a simple case, computing nodes of a cluster system is a kind of a

resource which can be reserved. RRS makes a reservation to only computing

nodes of a cluster.

 16

In general, to make a reservation to resources, a user should specify the

followings:

 - The start time of reservation

 - The end time of reservation (or duration from the start time)

 - The kind of resource to reserve

 - The identity of reservation maker

 - Amount of resource to reserve

Time

A
m

ou
nt

 o
f R

es
ou

rc
e

Start Time End Time
durationNow

Figure 1-5 Reservation information: start time, duration, amount of
resource, the type of resource and the identity of reservation maker

Reservation Status

Figure 1-6 and Figure 1-7 show the status change of a reservation item. It

starts from the ‘unknown’ status. Until the start time, the reservation is in

‘waiting’ status, which means that the reservation is valid but it is not ready to

be allocated yet. Immediately after the start time the status of the reservation

changes to be ‘wait_alloc’ status, which means the reservation is valid and it

is available for allocation now. After the job runs on the resources, the status

of the reservation changes to be ‘allocated’. Finally, when the job finished

successfully, the status changes to be ‘done’. If the valid reservation interval is

over with no job allocated, the reservation status becomes to ‘invalid’ status.

Reservations can be canceled if the status is one of ‘unknown’, ‘waiting’, or

‘wait_alloc’ status.

 17

cancel invalid

unknown

wait_alloc

allocated

done

final stat

final stat

final stat

Reservation Service
register a new reservation

Reservation Manager Thread
becomes aware of a new reservation

Reservation Manager Thread update status
if the reservation valid interval has been started

Reservation Manager Thread invalidates the status
if the reservation valid interval has been finished

Reservation Service cancels the reservation
if it receives a cancellation request

Job Execution Module allocate a job with
the reserved resource

waiting

Job Execution Module changes the status
if the job has finished.

Figure 1-6 Status changes of a reservation

The ‘cancel’, ‘invalid’, and ‘done’ are final status. The ‘waiting’, ‘wait_alloc’ and

‘allocated’ status are valid status, which means that reserved resources are

not be reserved or available by other users.

Request
a reservation

Request
an allocation

start
time

end
time

valid interval

Job
Finishes

unknown,
waiting

wait_alloc allocated done

Figure 1-7. Reservation status changes in a time line

The Figure 1-7 depicts the status changes of a reservation in a time line.

1.1.1.6 SRB enabled globus-url-copy

 18

Overview

globus-url-copy, which is an application of Globus toolkit, copies a file

specified by source URL to a location specified by destination URL, using the

GASS transfer API. It is used to stage in/out files from/to storage device for

executing jobs. All protocols supported by GASS (local file, http, https, ftp, and

gsiftp) are supported. Piping to/from stdin/stdout (setting source/dest

argument = '-') is also supported. However, it could not retrieve/save data

from/to storage not to be able to use protocol supported by GASS. The

Storage Resource Broker (SRB) is client-server middleware that provides a

uniform interface for connecting to heterogeneous data resources over a

network and accessing replicated data sets. SRB support a lot of interfaces

for data resources including HRM, HPSS, DB2, Oracle, Illustra, ObjectStore,

ADSM, UniTree, UNIX, NTFS, and HTTP. Therefore, we modify globus-

url-copy application to support SRB protocols as well as GASS protocols

for accessing various data resources and replicated data sets.

SRB URI

The location of data file should be described with URL format to use globus-

url-copy. Thus, the location of data in SRB could be described with URI

format as showed in Figure 1-8. Actually, both replica and resource are not

included in “http://www1.ietf.org/proceedings_new/04nov/IDs/draft-gilbert-srb-

uri-00.txt”. replica might be used for accessing replicated data sets.

resource might be used to specify the resource name for creating new data to

SRB.

 19

Figure 1-8 Syntax for SRB URI

As mentioned above, the data could be retrieved from SRB server or be

saved to SRB server by specified SRB URI format. If there are no attributes

except replica and path in specified format, default configuration will be read

in ~/.srb/.MdasEnv file. The ~/.srb/.MdasEnv file includes following default

configuration information to connect to SRB server.

· mdasCollectionName: default collection name

· mdasDomainName: default domain name

· srbUser: default SRB user id

· srbHost: default host IP of SRB server

· srbPort: default host port of SRB server

· defaultResource: default storage resource name

· AUTH_SCHEME: default authentication mechanism:

PASSWD_AUTH, GSI_AUTH, and ENCRYPT1

· SERVER_DN: server DN of proxy to invoke SRB server in case of

GSI authentication

SRB Authentication

SRB server accepts ENCRYPT1 or GSI authentication. If password exists, it

authenticates to SRB server via ENCRYPT1 mechanism. Otherwise, by

default, it uses GSI authentication. Because the server DN of proxy to invoke

SRB server must be specified in case of GSI authentication, the server DN

srb:// [username.mdasdomain [.zone] [:password] @]

host [:port]

[?replica=replica_id][?resource=resources_name]

[/path]

 where square brackets [...] delineate optional components, the

characters :, /, @, and . stand for themselves, and spaces should be

 20

could be read via –s, -ss, and –ds among options of globus-url-copy.

If the option is not specified, the server DN should be described by

SERVER_DN in ~/.srb/.MdasEnv file.

1.1.1.7 Client Tools

GRASP provides client tools. They provide three user interfaces: a command

line interface (CLI), a graphic user interface (GUI), and web interface (WI).

They have same functionality for creating and modifying JRDL for a job,

submitting the job to JSS, and controlling and monitoring the job. The detail

usage of these client tools will appear in another document about GRASP,

users’ guide.

Command Line Interface (CLI): grasprun

The CLI lets you execute commands via grasprun at the shell prompt. The

CLI could be run at Linux or Windows environment. The user should install

the library and certificates to use grasprun and know the syntax of JRDL to

describe a job.

Graphic User Interface (GUI)

The GUI is a graphic interface based on Java SWING, which is OS

independent. While the user must write a JRDL manually in case of

grasprun, GUI provides convenient interface to load and write the JRDL.

Web Interface (WI): Job Submission Portlet

The WI is a web interface based on Gridsphere, which provides an open-

source portlet based Web portal. While the user should install the library and

certificates in case of both CLI and GUI, he/she does not have to care about

installation as well as the syntax of JRDL in web interface. We have

implemented Job submission portlet enabling the user to easily make a JRDL,

 21

load the JRDL, submit a job to JSS, and monitor the submitted job.

1.2 Installation and Configuration

1.2.1 Support software

1.2.1.1 Required

· OS: Linux (RedHat 7.3 or more are recommended)

· J2SDK 1.4 (developed under 1.4.2_04, 2.4.2_06)

· ANT (developed under 1.6.2)

· Globus Toolkit 3 (developed under 3.2.1)

Following softwares are required only for RMS and RRS

· MySQL Database (tested under 3.23.49, 4.0.16, and 4.0.20)

· JDBC Driver: MySQL-Connector/J (tested under 3.0.14)

· PHP4 (4.3.4 or latest)

1.2.1.2 Optional

· Apache Web server (optional, for reservation status monitoring)

1.2.2 Installing support softwares

1.2.2.1 Installing Java SDK

Required for: GT3 Webservices components

Recommended Versions: 1.4.x

Download Link: http://java.sun.com/j2se

 22

1.2.2.2 Installing Globus Toolkit

1. Download all source code from http://www.globus.org

2. As globus, untar the source installer.

3. Make sure that ANT_HOME and JAVA_HOME are set, and that ant and

java are on your PATH.

4. Run

./install-gt3 /path/to/install

7. Configure the Globus Toolkit 3.2, looking through

 http://www-unix.globus.org/toolkit/docs/3.2/installation/install_config.html

1.2.2.3 MySQL Database

Download a latest MySQL distribution from http://www.mysql.com/.

You can find a copy of MySQL distribution in software archive directory of

KISTI Grid Testbed web site :

http://testbed.gridcenter.or.kr/software/index.php?dir=./DBMS/mysql

Move to a temporary directory and extract the distribution file.

cd /usr/local/src (download the distribution file in this directory)

tar zxvf mysql-4.0.16.tar.gz

cd mysql-4.0.16

Configure and compile the source

./configure --prefix=/usr/local/mysql --with-mysqld-user=root

make

Copy the compiled binaries to the install location.

make install

Make a symbolic link for ‘mysql’ command line client, or add it to the $PATH

variable.

ln -s /usr/local/mysql/bin/mysql /usr/local/bin/mysql

 23

Database initialization

/usr/local/mysql/bin/mysql_install_db

Start MySQL server daemon

/usr/local/mysql/bin/mysqld_safe -u root &

To start MySQL server daemon during system startup, add a line to the

rc.local file.

vi /etc/rc.d/rc.local

...

/usr/local/mysql/bin/mysqld_safe -u root &

...

Refer to other books or documents about managing and using MySQL.

1.2.2.4 MySQL-Connector/J 3.0 (JDBC Driver)

Download it from http://dev.mysql.com/downloads/connector/j/3.0.html

tar zxvf mysql-connector-java-3.0.14-production.tar.gz

cp mysql-connector-java-3.0.14-production/mysql-connector-java-

3.0.14-production-bin.jar $JAVA_HOME/jre/lib/ext/

1.2.2.5 PHP4

PHP4 (command line interface) is required for Job Manager Script module in

GRASP.

PHP4 compiled with Apache web server is optionally required for monitoring

reservation database table.

The libxml2 module must be compiled with PHP.

Download the latest version of libxml2 from http://xmlsoft.org/sources/.

tar zxvf libxml2-2.6.16.tar.gz

cd libxml2-2.6.16/

 24

./configure --prefix=/usr/local/libxml2 &> configure.log

make &> make.log

make install &> install.log

The zlib library must be installed.

Download a latest PHP distribution from http://www.php.net/

cd /usr/local/src

tar zxvf php-4.3.9.tar.gz

cd php-4.3.9

./configure \

--enable-pcntl \

--with-dom=/usr/local/libxml2 --with-zlib-dir=/usr --disable-cgi

make clean

make

make install

The configure option ‘--enable-pcntl’, which is for process control in PHP, is

required in job manager script module. The ‘--with-dom’ is required for XML

processing in PHP.

The ‘--with-zlib-dir’ is required for libxml2 in PHP.

1.2.2.6 PHP4 + Apache Web Server (optional)

Apache should be configured before compiling PHP.

Download a latest apache distribution from http://www.apache.org/

cd /usr/local/src

 # tar zxvf apache_1.3.33.tar.gz

cd apache-1.3.33/

./configure

 25

Download a latest PHP distribution from http://www.php.net/

cd /usr/local/src

tar zxvf php-4.3.9.tar.gz

cd php-4.3.9

./configure --with-apache=../apache_1.3.33/ \

 --with-config-file-path=/etc/httpd \

--with-mysql=/usr/local/mysql --enable-pcntl \

--with-dom=/usr/local/libxml2 --with-zlib-dir=/usr --disable-cgi

make clean

make

make install

Compile the Apache web server and install it.

cd /usr/local/src/apache-1.3.33/

./configure --prefix=/usr/local/apache \

 --activate-module=src/modules/php4/libphp4.a

make clean

make

make install

Setup the PHP installation

cd /usr/local/src/php-4.3.9

mkdir /etc/httpd; cp php.ini-dist /etc/httpd/php.ini

Setup the Apache web server

vi /usr/local/apache/conf/httpd.conf

 ...

LINE 808(approx.): add a line

 # PHP

 AddType application/x-httpd-php .php

 26

</IfModule>

 ...

 :wq

{Start | stop | restart} the apache web server

/usr/local/apache/bin/apachectl {start | stop | restart}

1.2.2.7 OpenPBS and Cluster Configuration

Computing nodes in a cluster should be configured for rsh and ssh. The job

manager script module uses ssh for executing remote program in other

computing nodes in the cluster. The rsh have a problem to be used for this

purpose. To configure ssh add host keys of all the computing nodes to

/etc/ssh/ssh_known_hosts of each computing nodes. The hostname in the

known_hosts file should be fully qualified domain name(FQDN).

1.2.3 Installing GRASP

JSS enables a Grid job to submit to resources managed by RMS. This service

could be installed at Linux based server. Even though JSS could be deployed

with RMS at the same service container, we recommend separate installation.

RMS enables a Grid job to allocate resources and be executed at

computational nodes in local resource. This service could be deployed at front

node of each Linux based cluster.

GSS selects best-fit resources for a Grid job automatically. It uses GAIS, the

information service, to find out resources’ status and RRS in selected

resources to make reservations.

In addition, we provide two kinds of packages: one is a package containing

both a command line interface (CLI) and a graphic user interface (GUI), and

 27

the other is a package providing a web interface (WI) based on Gridsphere

portlet.

Download

http://kmi.moredream.org/downloads/index.php

You can download the whole package of GRASP from the web site written

above. And then you can get following files of each components of GRASP.
Grasp-0.9
|-- jobsubmissioin-0.3.tar.gz
|-- mrmfs-0.3.tar.gz
|-- gridscheduling-0.3-src.tar.gz
|-- globus_gass_copy-srb-0.1.tar.gz
|-- grasp-client-0.2.tar.gz
`-- jobsubmission-portlet-0.3.tar.gz

1.2.3.1 JSS (Job Submission Service)

A. Installation

As the globus container administrator’s account,

$ tar zxvf jobsubmission-0.3.tar.gz

$ cd ./jobsubmission

$./install-gt3-jobsubmission $GLOBUS_LOCATION

$ su -

$GLOBUS_LOCATION/bin/setperm.sh

B. Configuration

1. Check if there are hosts to be installed resource manager system in

/etc/hosts file.

1.2.3.2 GSS (Grid Scheduling Service)

A. Installation

 28

As the globus container administrator’s account,

$ tar zxvf gridscheduling-0.1-src.tar.gz

$ cd ./gridscheduling-0.1

$./gss-install $GLOBUS_LOCATION

B. Configuration

$GLOBUS_LOCATION/etc/base-info-service.xml

This file contains the information of a Grid information service which GSS will

contact to query resource information. The administrator has to indicate the

address of the information service, service data name of resource information,

and namespace of the service data.

1.2.3.3 RMS (Resource Manager Service) and RRS (Resource
Reservation Service)

Because both RMS and RRS must be installed simultaneously on same

container, both services are packaged to one file: mrmfs-0.11.tar.gz

A. Required software

· MySQL Database (tested under 3.23.49, 4.0.16, and 4.0.20)

· PHP4 (4.3.4 or latest)

· JDBC Driver: MySQL-Connector/J (tested under 3.0.14)

B. Optional software

· PHP4 + Apache Web server (for reservation status monitoring)

· OpenPBS (Portable Batch System)

· SRB enabled globus-url-copy

C. Installation of SRB enabled globus-url-copy
$ tar zxvf globus_gass_copy-srb-0.1.tar

 29

$ cd globus_gass_copy-srb

$ mkdir /usr/local/srb

$ tar zxvf SRB3_2_1e.tar.gz –C /usr/local/srb

$ export SRB_LOCATION=/usr/local/srb/SRB3_2_1e

$./install.sh

D. Configuration of SRB enabled globus-url-copy

You should edit the ~/.srb/.MdasEnv file to use SRB server. The

~/.srb/.MdasEnv file includes following default configuration information to

connect to SRB server.

· mdasCollectionName: default collection name

· mdasDomainName: default domain name

· srbUser: default SRB user id

· srbHost: default host IP of SRB server

· srbPort: default host port of SRB server

· defaultResource: default storage resource name

· AUTH_SCHEME: default authentication mechanism: PASSWD_AUTH,

GSI_AUTH, and ENCRYPT1 (You have to specify AUTH_SCHEME.)

· SERVER_DN: server DN of proxy to invoke SRB server (If you choose

GSI_AUTH for AUTH_SCHEME, you should specify.)

E. Testing of SRB enabled globus-url-copy

After configuring the above instructions, you should be able to execute

globus-url-copy.

As the globus container administrator’s account,

$ grid-proxy-init

$ globus-url-copy \

srb://username.userdomain@IPADDRESS/collectaioname/filen

ame \

file:////tmp/filename

 30

$ more /tmp/filename

F. Installation of RMS and RRS

As the globus container administrator’s account,

$ tar zxvf mrmfs-0.3.tar.gz

$ cd ./mrmfs

$./install-gt3-mrmfs $GLOBUS_LOCATION

$ su -

$GLOBUS_LOCATION/bin/setperm.sh

G. Configuration of RMS and RRS

After building the service, we should do some configurations.

(a) Configuring Database

We provide SQL files to create or drop database in

$GLOBUS_LOCATION/etc/reservation-sql.

Create a database named ‘moredream’ and make tables:

$ mysql [–u user] [–p]

mysql> create database moredream;

mysql> quit

$ cd $GLOBUS_LOCATION/etc/reservation-sql

$ mysql [–u user] [-p] moredream < create_tables.sql

Refer to other documents to use mysql command.

(b) Edit configuration file

Open $GLOBUS_LOCATION/etc/reservation.conf and edit the database

connection values:

$ vi $GLOBUS_LOCATION/etc/reservation.conf

reservation.conf

 31

database connection

dbhost=hostname.example.com
dbport=3306
dbuser=root
dbpass=password
dbname=moredream

reservation service

res.resid_prefix=hostname.example.com
res.interval=3000
res.total_nodes=10
86400 = 3600*24 = 1 day
604800 = 3600*24*7 = 1 week
10800 = 3600 * 3 = 3 dyas
res.default_duration=1800
res.default_start_before=10800
res.max_duration=86400
res.start_not_before=60
res.start_not_after=604800

(c) Starting and Testing of RMS and RRS

Now, you are ready to start reservation service. Start the globus container.

$ globus-start-container

...

http://...:8080/ogsa/services/base/grasp/ReservationService

...

To test if RRS is correctly deployed and configured, run a test client program:

$ $GLOBUS_LOCATION/bin/test-rrs

http://127.0.0.1:8080/ogsa/services/base/grasp/ReservationSer

vice test

Database connection was successful

The service is correctly deployed

1.2.3.4 Client Tools

A. A client package containing both the CLI and the GUI: grasp-client-

 32

0.1.tar.gz

This package could be run on both Windows and Linux. This package is also

included in JSS package.

(a) Required

· Globus Toolkit 3.2.1 WS Core

(http://www-unix.globus.org/toolkit/downloads/3.2.1/#core)

(b) Download

http://kmi.moredream.org/downloads/index.php

(c) Linux Installation

Note: Before installing, you must set environment variable GLOBUS_LOCATION

and copy grasp-client-0.1.tar.gz to $GLOBUS_LOCATION.

$ cd $GLOBUS_LOCATION

$ tar zxvf grasp-client-0.2.tar.gz

(d) Linux Configuration

You can specify default factory address in configuration file:

$HOME/.globus/.grasprun.

factory=http://ipaddress:port

(e) Windows Installation

Note: Before installing, you should set environment GLOBUS_LOCATION

1. unzip grasp-client-0.2.zip to %GLOBUS_LOCATION%

(f) Windows Configuration

You can specify default factory address in configuration

file: %HOME%\.globus\.grasprun, where %HOME% is home directory. In

case of Windows XP and 2000, home directory is “C:\Documents and

 33

Settings\username\”

factory=http://ipaddress:port

B. A Job submission portlet package providing the WI: jobsubmission-

portlet-0.1.tar.gz

(a) Required

· Gridsphere 2.0.1

· Gridportlets portlet

(b) Download

http://kmi.moredream.org/downloads/index.php

(c) Installation
$ cd $GRIDSPHERE_LOCATION/projects

$ tar zxvf jobsubmission-portlet-0.3.tar.gz

$ cd jobsubmission-portlet

$ ant install

1.2.3.5 Testing

A. Running the first job

Now you can test that the services works properly with a simple job. This

example executes a single job to echo some arguments by “FORK” local job

manager. It determines the resources not by GSS but by user’s assignment.

Therefore, you need to edit the string rms_machine in

$GLOBUS_LOCATION/schema/base/grasp/jobsubmission/examples/fork_sin

gle.xml to be actual hostname deployed RMS to wish to run a job. You should

check if there is hostname of installed job submission machine in /etc/hosts

file. Here we use a job submission client “grasprun” to make a job submitted

 34

to JSS.

$ grid-proxy-init

$ grasprun -factory

http://jobsubmission_machine:8080/ogsa/services/base/gra

sp/JobSubmissionFactoryService -file

$GLOBUS_LOCATION/schema/base/grasp/jobsubmission/example

s/fork_single.xml

Note: If you have configured the factory address in ~/.globus/.grasprun file,

you do not have to specify –factory option.

If you want to make RMS use “PBS” instead of “FORK”, you should try

pbs_single.xml instead of fork_single.xml

$ grasprun –factory

http://jobsubmission_machine:8080/ogsa/services/base/gra

sp/JobSubmissionFactoryService -file

$GLOBUS_LOCATION/schema/base/grasp/jobsubmission/example

s/pbs_single.xml

If you want to automatically determine resources by GSS, you should try

single.xml.

$ grasprun -factory

http://jobsubmission_machine:8080/ogsa/services/base/gra

sp/JobSubmissionFactoryService -file

$GLOBUS_LOCATION/schema/base/grasp/jobsubmission/example

s/single.xml

 35

1.2.4 Operation of GRASP services

As you might get an intuition where to install and use each service in GRASP

from the architecture, each service of GRASP has to be properly installed and

operated. Please understand the Figure 1-1 and the role of each service

before deployment. Both JSS and GSS do not have to be installed together

on a same computing node and they could be operated on the same machine

or separated.

Followings are what you have to know to operate services properly.

1.2.4.1 JSS

JSS enables a Grid job to submit to resources by using RMS. This service

could be installed at Linux based server. Even though JSS could be deployed

with RMS at the same service container, we recommend separate installation.

A. Logging

JSS provide logging support by adding following three lines to

$GLOBUS_LOCATION/ogsilogging.properties file where jobsubmission.log

is a target file to append the log for job submission.

org.moredream.ogsa.impl.base.grasp.jobsubmission.JobSubmi

ssionThread=jobsubmission.log,info

org.moredream.ogsa.impl.base.grasp.jobsubmission.JobSubmi

ssionImpl=jobsubmission.log,info

org.moredream.ogsa.impl.base.grasp.jobsubmission.Multiple

JobSubmissionThread=jobsubmission.log,info

1.2.4.2 GSS

A. $GLOBUS_LOCATION/etc/sched-plugin-conf.xml

 36

This file provides information of the scheduling plugins which is included in the

GSS. GSS can have several scheduling plugins. Whenever a plugin is added,

the administrator has to add required information in this file. The contents of

this file will be provided to users in the form of service data of GSFS (Grid

Scheduling Factory Service).

1.2.4.3 RMS

RMS enables a Grid job to allocate resources and be executed at

computational nodes in local resource. This service could be deployed at front

node of each Linux based cluster. If you want to use SRB server at machine

installed RMS, you should install the SRB enabled globus-url-copy.

A. Logging

RMS provide logging support by adding following four lines to

$GLOBUS_LOCATION/ log4j.propertie file. Logging information will be

appended to ~/.globus/uhe-hostname/log file of each local account.

log4j.category.org.moredream.ogsa.impl.base.grasp.rms.job

manager.ResourceManagerImpl=DEBUG

log4j.category.org.moredream.ogsa.impl.base.grasp.rms.job

manager.JobManager=DEBUG

log4j.category.org.moredream.ogsa.impl.base.grasp.rms.job

manager.JobManagerScript=DEBUG

log4j.category.org.moredream.ogsa.impl.base.grasp.rms.job

manager.JobExecutionTimeHelper=DEBUG

1.2.4.4 RRS

RRS has one configuration file related to database connection and one

module to help monitoring the reservation status in

 37

$GLOBUS_LOCATION/etc directory.

A. Logging

RRS provide logging support by adding following two lines to

$GLOBUS_LOCATION/ogsilogging.properties file where reservation.log is

a target file to append the log for resource reservation.

org.moredream.ogsa.impl.base.grasp.reservation.impl.ReservationProvider

=reservation.log,trace

org.moredream.ogsa.impl.base.grasp.reservation.impl.ReservationManager

Thread=reservation.log,trace

B. Database Connection

Using $GLOBUS_LOCATION/etc/reservation.conf, you can configure the

database connection for RSS.

reservation.conf

database connection

dbhost=hostname.example.com
dbport=3306
dbuser=root
dbpass=password
dbname=moredream

reservation service

res.resid_prefix=hostname.example.com
res.interval=3000
res.total_nodes=10
86400 = 3600*24 = 1 day
604800 = 3600*24*7 = 1 week
10800 = 3600 * 3 = 3 dyas
res.default_duration=1800
res.default_start_before=10800
res.max_duration=86400
res.start_not_before=60
res.start_not_after=604800

 38

C. Monitoring Reservation Status

Using $GLOBUS_LOCATION/etc/reservation-dumpdb module included in the

distribution, you can monitor the reservation status.

For that, you need to install Apache + PHP4 to a web server host.

Extract the distribution file under the web root directory (e.g.

/usr/local/apache/htdocs) in your web server. Edit the config.php to configure

database connection parameters:

$ vi dumpdb/config.php

...

database connection

$conf['dbhost'] = "localhost";

$conf['dbuser'] = "root";

$conf['dbpasswd'] = "";

$conf['dbname'] = "moredream";

...

And open dumpdb.php using your web browser.

Figure 1-8 Monitoring reservation status using web browser

 39

Figure 1-9 Database table of reservation items

1.3 Using GRASP

1.3.1 JRDL (Job & Resource Description Language)

1.3.1.1 Overview

The Globus Resource Specification Language (RSL) 2 provides a common

interchange language to describe a Grid job. However the RSL 2 does not

contain user preferences to select automatically resources for allocating the

job. Moreover the RSL 2 has no features to describe elements required to co-

allocate the job and to represent sequent jobs. Therefore we provide the Job

and Resource Description Language (JRDL) as a general language to

describe a job and user preferences required allocating resources for the job

in Grid environment based on XML.

JRDL has a collection of jobs, each of which is "an atomic task" of a workflow

specification or other kinds of a complex, multi-step application. A job consists

of job attributes and resource attributes as showed in Figure 1-11. Job

attributes are elements to need to reserve resources in advance, allocate

resources, and execute job. Resource attributes are user preferences to

 40

determine resources to execute a job. Here we cover what both kinds of

attributes include and how each user should specify each attribute.

Figure 1-11 JRDL containing a collection of jobs, each of which has both

job and resource attributes

The job attributes includes executable attributes, job type attribute, file staging

attributes, job termination attributes, clean up attributes and co-allocation

attributes. Executable attributes are elements for executing a job, including

executable, arguments, working directory, environment, standard input, output,

and error, and library path. Job type attribute is element to specify the kind of

job. File staging attributes are elements for staging in files to execute a job

and staging out. Job termination attributes are elements to specify start and

termination time of a job to reserve the resources in advance. Resource

allocation attributes are related to local resource allocation including local

resource address (resourceManagerContact) and job manager type

(jobManagerType) as showed in Figure 1-12.

Job Attributes

Resource Attributes

<jrdl …>
 <job>

 <executable> … </executable>
 <arguments> … </arguments>
 …

 <resource>
 <count>
 <integer value="2"/>
 </count>
 …
 </resource>
 </job>

<job>

 …

 41

Figure 1-12 Job Containing only the Job Specification

The resource specification is user preference to determine resources to

submit a job, including total CPU count, OS type, processor type, size and

availability of memory and storage, free CPU, processor load, local job

manager type, and scheduler plug-in type. If user specifies the resource

allocation attributes in the job specification, which means user want to

determine the resources manually without scheduler, he/she does not have to

describe the resource specification as showed in Figure 1-12. However

he/she should specify total CPU count if he/she wants to use scheduler as

showed in Figure 1-13.

<jrdl …>

 <job>

 <executable> … </executable>

 …

 <subjob>

 <resourceManagerContact>

 <string>

 <stringElement value=

 "http://eros01.gridcenter.or.kr:8080"/>

 </string>

 </resourceManagerContact>

 <jobManagerType>

 <enumeration>

 <enumerationValue><pbs/></enumerationValue>

 </enumeration>

 </jobManagerType>

 <count>

 <integer value="2"/>

 </count>

 …

 </subjob>

 42

Figure 1-13 Job Containing both the Job Specification and User

Preferences to Select Automatically Resources by Scheduler

Basically, we use RSL2 schema to describe contents of each attribute. For

example, job executable attribute must include path element to describe

executable file as shown in Figure 1-14. In addition, as RSL2 provides, each

element could include substitutionRef element replaced by the element

where substituionDef element defines. For instance, job executable

attribute showed in Figure 1-14 could be replaced with job executable

attribute including substitutionRef element illustrated in Figure1-15.

Job Specification

Resource Specification

<jrdl …>

 <job>

 <executable> … </executable>

 <arguments> … </arguments>

 …

 <resource>

 <count>

 <integer value="4"/>

 </count>

 …

 </resource>

 </job>

</jrdl>

 43

Figure 1-14 Job executable attribute

Figure 1-15 Job executable attribute including substituionRef element

By default, as illustrated Figure 1-15, if you want to use substitutionRef

element, substituionDef element must be specified except reserved

substituionDef elements to be defined at local resources as shown in Table 1-

1.

<jrdl …>

 <job>

<executable>

 <path>

<stringElement value="/home/user/executable"/>

</path>

</executable>

…

 </job>

</jrdl>

<jrdl …>

<substitutionDef name="HOME">

 <stringElement value="/home/user"/>

 </substitutionDef>

 <job>

<executable >

 <path>

 <substitutionRef name="HOME"/>

<stringElement value="/executable"/>

 </path>

</executable >…

 </job>

</jrdl>

 44

Table 1-1 Reserved substitution definition

Substitution Definition Meaning

HOME Home directory path of user account

LOGNAME Log name

GLOBUS_LOCATION Globus location

X509_CERT_DIR Certificate directory

GLOBUS_HOST_CPUTYPE Host CPU type

GLOBUS_HOST_MANUFACTURER Host manufacturer

GLOBUS_HOST_OSNAME Host OS name

GLOBUS_HOST_OSVERSION Host OS version

GLOBUS_RMS_JOB_CONTACT The contact address of RMS

GLOBUSRUN_GASS_URL
The address of GASS server that a job

submission client invoke automatically

1.3.1.2 Job attributes

Job attributes are elements to need to reserve resources in advance, allocate

resources, and execute job, including executable attributes, job type attribute,

file staging attributes, job termination attributes, clean up attributes and co-

allocation attributes. Executable attributes are elements for executing a job,

including executable, arguments, working directory, environment, standard

input, output, and error, and library path. Job type attribute is element to

specify the kind of job. File staging attributes are elements for staging in files

to execute a job and staging out. Job termination attributes are elements to

specify start and termination time of a job to reserve the resources in advance.

Co-allocation attributes are related to local resource allocation including local

resource addresses, job manager type and CPU count.

 45

Basically, a user might want to automatically determine resources by meta-

scheduler as illustrated in Figure 1-11. However If user wants to determine

resources manually, co-allocation attributes must be used as showed in

Figure 1-16.

Figure 1-16 Co-allocation attributes to specify local resource to submit a

job

When a job is submitted to resources, the job should be divided into several

subjobs, each of which might has different job attributes. Therefore, you can

specify different job attributes for each subjob as illustrated in Figure 1-17. In

this job, there are two subjobs, which have different executable file. One is

“a.out,” and the other is “b.out”.

<jrdl …>
 <job>

 <executable> … </executable>
 …
 <subjob>
 <resourceManagerContact>
 <string>
 <stringElement value=
 "http://eros01.gridcenter.or.kr:8080"/>
 </string>
 </resourceManagerContact>
 <jobManagerType>
 <enumeration>
 <enumerationValue><pbs/></enumerationValue>
 </enumeration>
 </jobManagerType>
 <count>
 <integer value="2"/>
 </count>
 …
 </subjob>
 <subjob> … </subjob>

 </job>

Co-allocation attributes

 46

Figure 1-17 Job containing different job attributes for a subjob

A. Executable attributes

(a) Job executable attribute

The source of executable file is local or remote file. If executable file is a form

of GASS-compatible URL like “gsiftp://ip/path/file”, executable file could be

staged from the GASS-compatible file server.

An element in your document might look like this:

<executable>
 <path>

<stringElement value=”EXECUTABLE”/>
</path>

</executable>

<jrdl …>
 <job>
 <executable>

<path><stringElement value=”a.out”/></path>
</executable>

<jobType>

 <enumeration>

 <enumerationValue><htc/></enumerationValue>

</enumeration>

</jobType>

<subjob>

 <executable>

 <path><stringElement value=”b.out”/></path>

</executable>

</subjob>

<resource>
 <count>
 <integer value="2"/>
 </count>

</resource>
 </job>
</jrdl>

 47

(b) Job arguments attribute

An element in your document might look like this:

(c) Job directory attribute

An element in your document might look like this:

(d) Environment attribute

An element in your document might look like this:

(e) Standard input attribute

The source of standard input file is STDIN. STDIN is local or remote file. If

STDIN is a form of GASS-compatible URL, STDIN could be received from the

<arguments>
 <stringArray>
 <string>
 <stringElement value="arg1"/>
 </string>
 <string>
 <stringElement value="arg2"/>
 </string>
 </stringArray>

</arguments>

<directory>
 <path>

<stringElement value="/path/to"/>
 </path>
</directory>

<environment>
 <hashtable>
 <entry name="HOME">
 <stringElement value="/path/to"/>
 </entry>
 </hashtable>
</environment>

 48

GASS-compatible file server.

An element in your document might look like this:

(f) Standard output attribute

The destination of standard output file is STDOUT. Standard output file might

have multiple destinations and each destination is local or remote file.

An element in your document might look like this:

(g) Standard error attribute

The destination of standard error file is STDERR. Standard error file might

have multiple destinations and each destination is local or remote file.

An element in your document might look like this:

<stdin>
<path>

<stringElement value=”STDIN”/>
</path>

</stdout>

<stdout>
<pathArray>

<path>
<stringElement value="STDOUT"/>

</path>
</pathArray>

</stdout>

<stderr>
<pathArray>

<path>
<stringElement value="STDERR"/>

</path>
</pathArray>

</stderr>

 49

(h) Library path attribute

Job might need to specify library paths. Each library path must be local path.

An element in your document might look like this:

B. Job type attributes

(a) Job type attribute

Job type attribute is element to specify the kind of job. JRDL has three kinds

of job type: single, xmpi, and htc.

An element in your document might look like this:

C. File staging attributes

(a) File staging in attribute

<libraryPath>
<pathArray>

<path>
<stringElement value="/librarypath/to"/>

</path>
</pathArray>

</libraryPath>

<jobType>
<enumeration>
 <enumerationValue>
 <htc/>
 </enumerationValue>
</enumeration>

</jobType>

 50

You can specify a list of ("remote URL" "local file") pairs which indicate files to

be staged into the cache. Symbolic link from the cache to the "local file" path

will be made.

An element in your document might look like this:

(b) File staging out attribute

You can specify a list of ("local file" "remote URL") pairs which indicate files to

be staged from the job to a GASS-compatible file server.

An element in your document might look like this:

D. Job lifetime attributes

<fileStageIn>
 <fileInputArray>
 <fileInput>
 <url>
 <urlElement value="gsiftp://ip/path/file"/>
 </url>
 <path>
 <stringElement value="file"/>
 </path>
 </fileInput>
 </fileInputArray>
</fileStageIn>

<fileStageOut>
 <fileOutputArray>
 <fileOutput>

<path>
 <stringElement value="file"/>
 </path>
 <url>
 <urlElement
value="gsiftp://ip/path/file"/>
 </url>

</fileOutput>
 </fileOutputArray>

 51

These attributes are attributes related to the start time and end time of a job.

Job start time and Job start before are mutually exclusive. Therefore, if you

want to specify start time of a job, you have to determine between Job start

time and Job start before.

(a) Job start time

If a job should start at a specific time, you should describe a time by Job start

time. The dateTime data type is used to specify a date and a time.

The dateTime is specified in the following form "YYYY-MM-DDThh:mm:ss"

where:

· YYYY indicates the year

· MM indicates the month

· DD indicates the day

· T indicates the start of the required time section

· hh indicates the hour

· mm indicates the minute

· ss indicates the second

Note: All components are required.

To specify a time zone, you can either enter a dateTime in UTC time by

adding a "Z" behind the time.

An element in your document might look like this:

(b) Job start before

If a job should start before a specific duration, you should describe a time

interval by Job start before. The duration data type is used to specify a time

interval.

The time interval is specified in the following form "PnYnMnDTnHnMnS"

where:

<jobStartTime>2004-10-21T01:10:00.000Z</jobStartTime>

 52

· P indicates the period (required)

· nY indicates the number of years

· nM indicates the number of months

· nD indicates the number of days

· T indicates the start of a time section (required if you are going to

specify hours, minutes, or seconds)

· nH indicates the number of hours

· nM indicates the number of minutes

· nS indicates the number of seconds

An element in your document might look like this:

(c) Job duration

If a job should execute during a specific interval, you should describe a time

interval by Job duration. The duration data type is used to specify a time

interval.

An element in your document might look like this:

E. Clean up attributes

(a) Clean up attribute

This attribute specifies files to clean up after a job has completed.

An element in your document might look like this:

<jobStartBefore>PT10H3M</jobStartBefore>

<jobDuration>PT10H3M</jobDuration>

<fileCleanUp>
<pathArray>

<path>
<stringElement value="cleanUpFile"/>

</path>
</pathArray>

</fileCleanUp>

 53

F. Co-allocation attributes

If you want to manually determine the resources, you should specify co-

allocation attributes.

(a) Resource manager contact attribute

You should specify the contact address of RMS.

An element in your document might look like this:

(b) Job manager attribute

You should specify the type of local job manager. We are supporting two kinds

of type: fork and pbs.

An element in your document might look like this:

(c) Count attribute

You should specify the count of CPU to be allocated at RMS.

An element in your document might look like this:

<resourceManagerContact>
 <string>
 <stringElement value="http://service-container"/>
 </string>
</resourceManagerContact>

<jobManagerType>
 <enumeration>
 <enumerationValue>
 <pbs/>
 </enumerationValue>
 </enumeration>
</jobManagerType>

<count>
<integer value="5" />

</count>

 54

1.3.1.3 Resource attributes

The resource attributes are user preferences to determine resources to

submit a job, including total CPU count, OS type, processor type, size and

availability of memory and storage, free CPU, processor load, local job

manager type, and scheduler plug-in type.

A. Count attribute

You must specify the total count of CPU to be allocated to submit a job.

An element in your document might look like this:

B. Operating system attribute

You might need to describe the specific name of operating system of nodes to

be selected in resource pools.

An element in your document might look like this:

C. Processor attribute

You might need to describe the minimum clock speed of processor of nodes

to be selected in resource pools. The unit of clock speed is megahertz.

An element in your document might look like this:

<operatingSystem>
 <name>
 <string>
 <stringElement value="Linux"/>
 </string>
 </name>
</operatingSystem>

<count>
<integer value="5" />

</count>

 55

D. Minimum main memory attributes

(a) Minimum RAM available attribute

You might need to describe the minimum available RAM size of nodes to be

selected in resource pools. The unit of RAM size is mega byte.

An element in your document might look like this:

(b) Minimum RAM size attribute

You might need to describe the minimum RAM size of nodes to be selected in

resource pools. The unit of RAM size is mega byte.

An element in your document might look like this:

E. Minimum storage attribute

You might need to describe the minimum available storage size of nodes to

be selected in resource pools. The unit of storage size is mega byte.

An element in your document might look like this:

<minMainMemory>
 <minRAMSize>
 <integer value="256" />
 </minRAMSize>
</minMainMemory>

<minMainMemory>
 <minRAMAvailable>
 <integer value="100" />
 </minRAMAvailable>
</minMainMemory>

<processor>
 <clockSpeed>
 <integer value="1000" />
 </clockSpeed>
</processor>

 56

F. Minimum free CPU attribute

You might need to describe the minimum available CPU number of nodes to

be selected in resource pools.

An element in your document might look like this:

G. Processor load attributes

(a) last15Min attribute

You might need to describe the average processor availability during last 15

minutes of nodes to be selected in resource pools. The average processor

availability is expressed as a percentage.

An element in your document might look like this:

(b) last5Min attribute

You might need to describe the average processor availability during last 5

minutes of nodes to be selected in resource pools. The average processor

availability is expressed as a percentage.

An element in your document might look like this:

<processorLoad>
 <last15Min>
 <integer value="10" />
 </last15Min>
</processorLoad>

<minFreeCPU>
 <integer value="4" />
</minFreeCPU>

<minStorage>
 <minStorageAvailable>
 <integer value="1000" />
 </minStorageAvailable>
</minStorage>

 57

(c) last1Min attribute

You might need to describe the average processor availability during last 1

minute of nodes to be selected in resource pools. The average processor

availability is expressed as a percentage.

An element in your document might look like this:

H. Scheduling type attribute

You might need to describe the type of local job scheduler of nodes to be

selected in resource pools. The type of scheduler must be either fork or

scheduler.

An element in your document might look like this:

I. Scheduling plug-in attribute

You might need to describe the name of scheduling plug-in to be selected in

resource pools. The name of plug-in must be either Default Plugin or

another plugin-provider-defined name. The plugin name could be referenced

<schedulingType>
 <string>
 <stringElement value="scheduler"/>
 </string>
</schedulingType>

<processorLoad>
 <last1Min>
 <integer value="10" />
 </last1Min>
</processorLoad>

<processorLoad>
 <last5Min>
 <integer value="10" />
 </last5Min>
</processorLoad>

 58

by querying to the GAIS.

An element in your document might look like this:

1.3.1.4. JRDL Examples

Here are some typical JRDL examples to be used in job submission. There

are three kinds of job types in JRDL: single, XMPI, and htc. For each job type,

we are giving several examples.

A. Single job examples

1. This example is about a single job to use “FORK” local job manager and be

submitted to dedicated host “rms_machine”

<schedulingPlugin>
 <string>
 <stringElement value="Default Plugin"/>
 </string>
</schedulingPlugin>

<?xml version="1.0" encoding="UTF-8"?>
<jrdl
xmlns="http://www.moredream.org/namespaces/2003/09/jr
dl">
 <job>
 <!-- executable attribute -->
 <executable>
 <path>
 <stringElement value="/bin/echo"/>
 </path>
 </executable>
 <!-- arguments attribute -->

 59

<arguments>
 <stringArray>
 <string>
 <stringElement value="arg1"/>
 </string>
 <string>
 <stringElement value="arg2"/>
 </string>
 </stringArray>
 </arguments>
 <!-- stdout attribute -->
 <stdout>
 <pathArray>
 <path>
 <stringElement value="stdout"/>
 </path>
 </pathArray>
 </stdout>
 <!-- stderr attribute -->
 <stderr>
 <pathArray>
 <path>
 <stringElement value="stderr"/>
 </path>
 </pathArray>
 </stderr>
 <!-- job type attribute-->
 <jobType>
 <enumeration>
 <enumerationValue>
 <single/>
 </enumerationValue>
 </enumeration>
 </jobType>

 <subjob>
 <resourceManagerContact>
 <string>
 <stringElement
value="http://rms_machine"/>
 </string>
</resourceManagerContact>
 <jobManagerType>

 <enumeration>

 60

2. This example is about a single job to use “PBS” local job manager and be

submitted to dedicated host “rms_machine”

<enumerationValue><fork/></enumerationValue>
 </enumeration>
 </jobManagerType>
 <count>
 <integer value="1"/>
 </count>
 </subjob>
 </job>

</jrdl>

<?xml version="1.0" encoding="UTF-8"?>
<jrdl
xmlns="http://www.moredream.org/namespaces/2003/09/jrd
l">
 <job>
 <!-- executable attribute -->
 <executable>
 <path>
 <stringElement value="/bin/echo"/>
 </path>
 </executable>
 <!-- arguments attribute -->

<arguments>
 <stringArray>
 <string>
 <stringElement value="arg1"/>
 </string>
 <string>
 <stringElement value="arg2"/>
 </string>
 </stringArray>
 </arguments>
 <!-- stdout attribute -->
 <stdout>
 <pathArray>
 <path>
 <stringElement value="stdout"/>
 </path>

 61

3. This example is about a single job to allocate resources automatically by

meta-scheduler.

 </pathArray>
 </stderr>
 <!-- job type attribute -->
 <jobType>
 <enumeration>
 <enumerationValue>
 <single/>
 </enumerationValue>
 </enumeration>
 </jobType>

 <subjob>
 <resourceManagerContact>
 <string>
 <stringElement
value="http://rms_machine"/>
 </string>
 </resourceManagerContact>
 <jobManagerType>
 <enumeration>

<enumerationValue><pbs/></enumerationValue>
 </enumeration>
 </jobManagerType>
 <count>
 <integer value="1"/>
 </count>
 </subjob>
 </job>

</jrdl>

<?xml version="1.0" encoding="UTF-8"?>
<jrdl
xmlns="http://www.moredream.org/namespaces/2003/09/jr
dl">
 <job>
 <!-- executable attribute -->
 <executable>

 62

<path>
 <stringElement value="/bin/echo"/>
 </path>
</executable>
 <!-- arguments attribute -->

<arguments>
 <stringArray>
 <string>
 <stringElement value="arg1"/>
 </string>
 <string>
 <stringElement value="arg2"/>
 </string>
 </stringArray>
 </arguments>
 <!-- stdout attribute -->
 <stdout>
 <pathArray>
 <path>
 <stringElement value="stdout"/>
 </path>
 </pathArray>
 </stdout>
 <!-- stderr attribute -->
 <stderr>
 <pathArray>
 <path>
 <stringElement value="stderr"/>
 </path>
 </pathArray>
 </stderr>
 <!-- job type attribute -->
 <jobType>
 <enumeration>
 <enumerationValue>
 <single/>
 </enumerationValue>
 </enumeration>

 </jobType>

 63

1.3.2 Client Program Providing Command Line
Interface (CLI) : grasprun
grasprun is a client program providing CLI to submit, monitor, and control a

job as well as validate a job description language called JRDL. Here we

describe the usage of grasprun for each functionality.

1.3.2.1 Validate a JRDL

grasprun can parse a job description language called JRDL, validate parsed

JRDL, and then show each attribute of JRDL. You might specify like this:

, where –p or –parse option is parsing operation, and –f or –file option is JRDL

<resource>
 <count>

<integer value="1"/>
</count>

 </resource>
 </job>

</jrdl>

$ grasprun -parse -f cpi_spec.xml

Job Type: XMPI

Executable: /home/guest01/kmi-test/cpi/cpi[local]

Environment: LD_LIBRARY_PATH[/usr/local/gt3.2.1/lib]

Stdout: stdout

Stderr: stderr

Subjob [0]

 Resource Manager Contact: http://vega01.gridcenter.or.kr:8080

 Job Manager Type: pbs

 Count: 10

 64

file name.

1.3.2.2 Job Submission

grasprun provides two kinds of job submission modes: batch and interactive

mode. If you want to submit, monitor, and control a job interactively, you might

specify like this:

$ grasprun –f a.xml –factory http://factory_address:8080

-o Job ID: http://

factory_address:8080/ogsa/services/base/grasp/JobSubmissio

nFactoryService/hash-23449824-1112770816197

WAITING FOR JOB TO FINISH

=============== Job Status =================

Job Status: Pending

[vega01.gridcenter.or.kr, PBS] Unsubmitted

==

=============== Job Status =================

Job Status: Active

[vega01.gridcenter.or.kr, PBS] Active(vega03+vega02)

==

pi is approximately 3.1416009869231249, Error is

0.0000083333333318

wall clock time = 4.702783

Process 0 on vega03.gridcenter.or.kr

=============== Job Status =================

Job Status: Done

[vega01.gridcenter.or.kr, PBS] Done(vega03+vega02)

==

It takes 87.0 seconds.

 65

, where –f or –file option is JRDL file name, –factory option is a service

container address including JSS service, and –o option let standard output of

job to print the console. If you configure the default setting for grasprun in

~/.globus/.grasprun file as following, you do not have to specify –factory

option. Additionally, the message of job status is fully shown, as property “full”

set to “true”.

If you want to submit a job in a batch mode, you might specify like this:

1.3.2.3 Job List and Information

grasprun can list the submitted job. Especially for batch job, it is essential to

get the list. You might specify like this:

, where –list or –l option is list operation.

And also information of the job could be checked like this:

$ grasprun -file cpi_spec.xml \

-b Job ID:

http://factory_address:8080/ogsa/services/base/grasp/JobSu

bmissionFactoryService/hash-28099439-1112773501104

factory=http://factory_address:8080

full=true

$ grasprun -list

Job ID:

http://factory_address:8080/ogsa/services/base/grasp/JobSu

bmissionFactoryService/hash-23449824-1112770816197

Job ID: http://

factory_address:8080/ogsa/services/base/grasp/JobSubmissio

nFactoryService/hash-28099439-1112773501104

 66

, where –info or –i option is job information operation.

1.3.2.4 Job Monitoring and Controlling

Submitted job might be checked the status of the job like this:

$ grasprun -info

http://factory_address:8080/ogsa/services/base/grasp/JobSubm

issionFactoryService/hash-23449824-1112770816197

Job ID:

http://150.183.234.231:8080/ogsa/services/base/grasp/JobSubm

issionFactoryService/hash-23449824-1112770816197

Subbmited Time: Thu Apr 07 09:40:41 KST 2005

Job Type: XMPI

Executable: /home/guest01/kmi-test/cpi/cpi[local]

Environment: LD_LIBRARY_PATH[/usr/local/gt3.2.1/lib]

Stdout: stdout, /dev/stdout[local]

Stderr: stderr, /dev/stderr[local]

Subjob [0]

 Resource Manager Contact:

http://vega01.gridcenter.or.kr:8080

 Job Manager Type: pbs

 Count: 10

$ grasprun -status

http://factory_address:8080/ogsa/services/base/grasp/JobSubm

issionFactoryService/hash-23449824-1112774942696

=============== Job Status =================

Job Status: Done

[eros01.gridcenter.or.kr, FORK] Done

==

 67

, where –status or –s option is status operation.

And also, submitted job might be killed like this:

, where –kill or –k option is kill operation.

$ grasprun -kill

http://factory_address:8080/ogsa/services/base/grasp/JobSubm

issionFactoryService/hash-23449824-1112774942696

 68

2. GAIS

2.1 Introduction

Grid information system is a critical component for Grid computing, by which

all types of Grid resources are virtually integrated and their information can be

effectually managed and accessed. Furthermore, the efficiency of Grid

computing is dependent on the functionalities supported by Grid information

system. But the existing information system such as MDS (Monitoring and

Discovery System) of GT (Globus Toolkit), which is currently received wide

publicity in Grid community, is not appropriate for a production-mode service

or a long-lived service because it supports only basic functions. That is why

we developed a new Grid information system named Grid Advanced

Information System (GAIS), which is a versatile information system that

provides information about the available resources on Grids and their status.

GAIS is the information services component of the MoreDream and is

composed of a collection of OGSI-compliant services which add and extend

the functionalities of GT3 MDS3. It is differentiated from the dynamic

management and the flat network of directory servers mentioned below.

2.1.1 Components

GAIS is composed of three grid services and two information providers. Each

service is related to manage and search information in a Grid, whereas two

providers play information sources for the GAIS.

2.1.1.1 Datacan Factory Service (DFS)

 69

Datacan (a compound word of “data” and “can”) is an enhanced version of

GT3.x index service. Like an index service, it aggregates Service Data from

Resource Services such as RIPS (Resource Information Provider Service) or

other Grid service instances by means of the Aggregator mechanism. It also

registers Grid service instances using the ServiceGroup mechanism. For

these aggregation and registration, it uses the RegistryPublishPrivder

mechanism. Additionally, it provides the following functionalities:

1) It removes stale data to assure data accuracy using the Data Sweep

mechanism. When a datacan is created, the mechanism in the datacan

calls a ServiceDataSweeper, which periodically checks the available time

of registered service data and deletes old service data.

2) It has two types. The one is a public datacan (pubcan) to announce its

information to a VO, and the other is a private datacan (prican) to share it

only in a domain. A DFS administrator can configure a pubcan suitable for

a VO according to her policy and she can also set up a prican to serve

some users’ purpose in her domain. It operates together with CAS

(Community Authority Service) to control access to a pubcan or prican

(not implemented).

DFS manages the lifecycle of a datacan using the Factory mechanism and

maintains the snapshot of DFS status (the list of published datacans) through

the Configuration mechanism. The snapshot is stored in a configuration file.

Figure 1-18 shows the structure of DFS.

 70

Datacan Factory Service

create

VO A VO B

VO Roster
Service

VO Roster
Service

RIPS

RIPS

GS

R
egistryPublishProvider

Datacan
Creator

ServiceData
Sweeper

Pubcan Pubcan Prican

Aggregator
Mechanism

Provider
Mechanism

ServiceGroup
Mechanism

Datacan

Configuration
Mechanism

Data Sweep
Mechanism

Acess Control
Mechanism

Config
file

registration Periodic sweep

call

call

Factory
Mechanism

Figure 1-18 The structure of Datacan Factory Service

2.1.1.2 VO Roster Service (VRS)

Only one VRS exists in a VO because it typifies a VO. It manages the

participants of VO and provides a registration interface to the VO. The

structure of VRS is as Figure 1-19.

VO Roster Service

Pubcan Pubcan Pubcan Pubcan

Site A Site B Site C Site D

registration

Datacan
Register

Config
file

VO
Configuration

Mechanism

ServiceGroup
Mechanism

Join Control
Mechanism

call

periodic
registration

Figure 1-19 The structure of VO Roster Service

 71

It provides the following functionalities:

1) It uses the ServiceGroup mechanism to register/unregister a datacan to

its own VO.

2) It admits only a pubcan. The registration of a prican is rejected. The Join

Control mechanism does this.

3) It makes use of the Configuration mechanism to store the snapshot of VO

status (the list of registered datacan). But the status of resources in a VO

changes dynamically. This may make the maintenance of the VO

snapshot difficult. A DatacanRegister executes periodic registrations to

preserve this.

2.1.1.3 VO Crawler Factory Service (VCFS)

VCFS provides a user with VO information. Only one VCFS exists in a VO

because it is basically a service for a VO like VRS, but we recommend a site-

based deployment of this service to avoid heavy load from plenty of users in a

VO. This enables the load to be decentralized to each site in the VO. Figure

1-20 illustrates the structure of DFS.
VO Crawler

Factory Service

VO Crawler
Service

…

create

VO Roster
Service

Site A

Site B

Site C

VO Crawler
Service

VO Crawler
Service

Pubcan

Pubcan

Pubcan

Crawler

Crawler

Crawler

Crawling
CoordinatorFactory

Mechanism

VO snapshot

find-service-data

registration

find-vo-data &
find-vo-service

Figure 1-20 The structure of VO Crawler Factory Service

 72

It provides the following functionalities:

1) This service has two query options. The one of two options is the find-vo-

data, which crawls on VO information for a user. The other is the find-vo-

service, which provides the location (GSH: Grid Service Handle) of a Grid

service in a VO for a user. Actually, the find-vo-service is a special form of

the find-vo-data to serve the convenience of a user.

2) It also creates the VO Crawler Service (VCS) using the Factory

mechanism to protect a user session. VCS gains a VO snapshot from

VRS. To achieve the efficiency of query, VCS creates the Crawlers

corresponding to each participant (pubcan) using the Thread mechanism.

Each crawler uses the OGSI find-service-data to query its own pubcan.

The CrawlingCoordinator orchestrates each crawler’s behavior.

2.1.1.4 MoreDream Providers

MoreDream Information Providers provide lots of information about data

replication as well as computing resource. It is based on the use of provider

execution mechanism. They are composed of McsScriptProvider and

MseScriptProvider. MceScriptProvider provides lots of resource information

used in K*Grid. It conforms to Glue schema and extends it. MseScriptProvider

provides information about data replications. It defines a new information

schema related to storage elements. You can easily obtain information that is

produced in MCAT-enabled SRB (Storage Resource Broker) Server. If you’d

like to add new information, you have only to create your own provider and

register it to RIPS.

 73

MceScriptProvider

MseScriptProvider

Java Provider

XML document

XML document

New Provider

…

registration

mse:SRBElement

registration

mce:ComputingElement

RIPS

Shell Scripts

MceScriptProvider

MseScriptProvider

Java Provider

XML document

XML document

New Provider

…

registration

mse:SRBElement

registration

mce:ComputingElement

RIPS

Shell Scripts

Figure 1-21 The registration of MoreDream Information Providers

2.1.2 Schema
GAIS uses the MoreDream schema, which adds and extends GLUE (Grid

Laboratory Uniform Environment) schema. The schema is categorized into

two element; MoreDream Computing Element (MCE) and MoreDream

Storage Element (MSE). MCE enhances the computing element of GLUE

schema 1.1 for supporting GRASP (Grid Resource Allocation Services

Package), a resource management component of MoreDream. MSE is

formed by processing the data replication information of SRB and it will be

changed to agree to the storage element of GLUE schema later.

Table 1-2 shows the content of MCE.

Table 1-2 MoreDream Computing Element

Category Object Description Unit

Name ComputingElement name ComputingEl

ement UniqueID ComputingElement ID

LRMSType Local Resource Manager type Info

LRMSVersion Local Resource Manager version

 74

GRAMVersio

n

GRAM version

HostName Host name

GateKeeperP

ort

GateKeeper port

TotalCPUs Total CPUs

Staus Queue status

TotalJobs Total Jobs

RunningJobs Running Jobs

WaitingJobs Waiting Jobs

State

FreeCPUs Free CPUs

Policy HostName Host name

LocalID Local user ID

DN User DN

Quota Local user Quota MB UserStorage

DefaultCapaci

ty

Local user default Quota MB

GlobalID Global Job ID

LocalID Local Job ID

LocalOwner Local Owner ID

GlobalOwner Global Owner ID

Job

Status Job status

Name Cluster name
Cluster

UniqueID Cluster ID

Name SubCluster name
SubCluster

UniqueID SubCluster ID

Name File system name

Root File system root Path

Filesystem

Size Total size MB

 75

AvailableSpac

e
Available space MB

ReadOnly Read only or not T/F

Type File system type eg. NFS

Vendor CPU vendor name

Model Model name

Version CPU version

Clockspeed CPU Clock speed MHz
Processor

OtherProcess

orDescription
Other description

RAMSize RAM size MB

RAMAvailabl

e
Available RAM size MB

VirtualSize Virtual RAM size MB

MainMemor

y

VirtualAvaila

ble
Available virtual RAM size MB

Last1Min
1-minute average processor

availability
%

Last5Min
5-minute average processor

availability
%

ProcessorLo

ad

Last15Min
15-minute average processor

availability
%

Name OS name

Release OS Release #
OperatingSy

stem
Version OS version

Name Interface name

IPAddress IP address IP addr

MTU MTU size Byte

NetworkAda

pter

OutboundIP OutboundIP or not T/F

 76

 InboundIP InboundIP or not T/F

Name Host name (Computation Element)
Host

UniqueID Host ID

Last1Min 1-minute average processor

availability

%

Last5Min 5-minute average processor

availability

% ProcessorLo

ad

Last15Min 15-minute average processor

availability

%

RAMSize RAM size MB

RAMAvailabl

e

Available RAM size MB

VirtualSize Virtual RAM size MB

MainMemor

y

VirtualAvaila

ble

Available virtual RAM size MB

Table 1-3 describes the content of MSE.

Table 1-3 MoreDream Storage Element

Category Object Description Unit

CollectionName Collection name

UserName User name SRBElement

ServerLocation SRB server location IP addr

CollectionName Collection name

UserName User name SRBResources

ServerLocation SRB server location IP addr

ResourceName Resource name

ResourceLocation Resource location IP addr

SRBResource

ResourceType Resource type

 77

ResourceClassName Resource class name

AdminName Admin name

DomainDesc Domain description

ZoneID MCAT Zone ID

CollectionName Collection name

UserName User name SRBReplicas

ServerLocation SRB server location IP addr

CollectionName Collection name

UserName User name

ServerLocation SRB server location IP addr

FileName File name

FileSize File size Byte

SRBReplica

FileType File type

FileReplicationID replica ID

ResourceLocation Resource location IP addr ReplicaDetail

ResourceName Resource name

2.1.3 User Interface

There are now ways in which you can view VO information collected by GAIS

or manage GAIS itself: the GAIS portlets and the GAIS PortType panels.

1) GAIS portlets: They offer resource information, service information or data

replication information of a VO to users.

2) GAIS PortType panels: They enable a system administrator to control

GAIS services.

The user interfaces will be added continuously as the version of GAIS is up.

 78

2.1.4 Features

GAIS whose aim is to facilitate the management of information in Grid has the

following features.

1) Dynamic management of directory server (datacan): GAIS can create a

datacan easily whenever needed and can also destroy it freely. This

enables a resource owner to share his resource according to his policies.

For example, he can publish a datacan, which contains the entire

information of his resource, for VO A, whereas the other datacan, which

holds half of the information, for VO B.

2) Flat network of directory servers: The network of directory servers in GAIS

is not configured hierarchically. Instead, it is flat. This has some merit.

First, information is not duplicated. In hierarchy, higher level directory

overlaps the information of lower level. Second, consistent

synchronization of information is guaranteed. Hierarchical structure may

pollute the consistency of information when the fault or the

subscription/unsubscription of a directory server.

3) Persistent configuration management: For a production-level service and

a long-lived service, the configuration of an information system must be

preserved persistently. GAIS provides a file-based configuration

management.

4) Smart query processing: Simultaneous query using Thread mechanism

alleviates the decline of the query performance which the flat network

takes place. GAIS offers the find-vo-service operation, which can easily

find a service in Grid, as well as the find-vo-data operation, which can

search the information of a service in detail.

5) Rich information providers: GAIS supplies plenty of information about data

replication as well as computing resource through providers conforming to

MoreDream schema.

 79

2.1.5 GAIS in actions

Figure 1-22 shows GAIS which configures 2 VOs (VO-A and VO-B) through

the combination of 4 sites. VO-A is composed of site A, B and C, whereas VO-

B consists of site B, C and D. A user has two query types. For VO query, he

uses the find-vo-data and the find-vo-service. He also utilizes the find-service-

data for Site query.

Datacan
Factory
Service

Prican

Pubcan

Prican

PubcanPubcan

Site A

Site B

RIPS GSGS

GS

RIPS

GS GS

Registration &
Subscription

Prican

PubcanPubcan

Site C

Prican

Pubcan

Site D

Datacan
Factory
Service

Datacan
Factory
Service

Datacan
Factory
Service

IP IP IP IP
IP

RIPS

IP IP
IP

VO Roster
Service

VO Crawler
Factory Service

VO Roster
Service

VO-A VO-B

VO Registration

VO Crawler
Factory Service

VO Crawler
Service

VO Query
(find-vo-data &
find-vo-service)

Site Query
(find-service-data)

VO snapshot VO Crawler
Service

VO snapshot

Thread based query

Figure 1-22 GAIS in actions

2.2 Installation and Configuration

2.2.1. Requirements

To install and use GAIS, you need a Linux system and the following softwares.

 80

1) Hardware

 * Linux System

2) Software

 * OS: Linux (Redhat 7.3 or more except Readhat 8.x are recommended)

 * Globus Toolkit 3.2.x

 * Gridsphere 2.0.x

 : If you want to use GAIS portlets, Gridsphere should be installed.

 * OpenPBS (Portable Batch System)

 : If you'd like to obtain the information about cluster, OpenPBS should be

installed

 * SRB Account

 : If you'd like to obtain the information that is produced in MCAT-enabled

SRB Server, contact the admin of MCAT-enabled SRB Server and obtain it.

2.2.2. Installing required software

2.2.2.1. Installing Globus Toolkit

The information about Globus Toolkit can be found at: http://www.globus.org

2.2.2.2 Installing Gridsphere

The information about Gridsphere can be found at: http://www.gridsphere.org

2.2.2.3 Installing OpenPBS

The information about OpenPBS can be found at: http://www.openpbs.org

2.2.3 Installing GAIS

 81

2.2.3.1. Download and extract
Download gais_v1.0.tar.gz from GAIS web site:

http://kmi.moredream.org/MoreDream/GAIS/

Untar the distribution file and move to gais_v1.0.

$ tar xvfz gais_v1.0.tar.gz

$ cd gais_v1.0

You can find some files & directories as follows:

gais_v1.0

|-- INSTALL.txt

|-- README.txt

|-- build.xml Ant build script

|-- gais-datacanFactory Datacan Factory Service

|-- gais-voRoster VO Roster Service

|-- gais-voCrawlerFactory VO Crawler Factory Service

|-- gais-providers

|-- mceScriptProvider MCE Information Provider

|-- mseScriptProvider MSE Information Provider

|-- gais-portlets Portlets

2.2.3.2 Compile & Installation

Basic GAIS package includes source files. If you want to obtain binary files

(coming soon), visit GAIS web site http://kmi.moredream.org/MoreDream/GAIS/.

It is very simple to install. As we mentioned above, GAIS is composed of 3

Grid Services, 2 Information Providers and 1 Portlets. It is your choice

whether whole components are installed or not.

Note 1: We assume that GT3.x is installed and GLOBUS_LOCATION is set

Note 2: Current directory is gais_v1.0

 82

(1) Installation of GAIS Services & Providers

: First, must be the administrator of GT (ex. globus).

 : Second, check $GLOBUS_LOCATION environment variable.

 : Third, select the proper ant <target> according to your purpose and run it.

 $ ant { deployAll | deployVoServices | deployDatacanWithVoCrawler |

 deployDatacanWithProviders | deployProviders }

 : Next, edit the config files of each services and providers (See 2.3.3

Configuration section).

 : Finally, run GT container.

 $ cd $GLOBUS_LOCATION

 $ bin/globus-start-container

 : You should see the following line in the output.

 http://<hostname>:<port>/ogsa/services/base/gais/DatacanFactoryService

http://<hostname>:<port>/ogsa/services/base/gais/VoCrawlerFactoryService

 http://<hostname>:<port>/ogsa/services/base/gais/VoRosterService

(2) Installation of GAIS Portlets

: First, must be the administrator of Jakarta Tomcat (ex. root)

 : Second, check $CATALINA_HOME environment variable

 : Third, edit build.properties to modify location of Gridsphere source and

build directory

 $ edit build.properties

 : Next, just run the following ant build script

 $ ant install

 : Finally, restart Jakarta Tomcat container.

 $ cd $CATALINA_HOME

 $ bin/shutdown.sh

 $ bin/startup.sh

 83

2.2.3.3 How to set up GAIS services
After 3 GAIS grid services and GAIS providers are installed, you can test your

installation. Before test, you should edit some files. After installation of GAIS,

you can see files that start with gais-* in $GLOBUS_LOCATI-ON/etc. Now, we

will explain about the configuration files.

1) How to create a datacan

You can create a datacan which participates in a VO by editing gais-data-

factory-config.xml and adding a datacan element in the publishedDatacans

element. At below example, the “DomainIndexService” and “Sample-

VoMember” datacan will be created. The type of datacan will be “PUBLIC” or

“PRIVATE.” PUBLIC datacan is open to a VO. On the contrary, PRIVATE

datacan is used in only local domain.

…

xmlns="http://www.moredream.org/namespaces/2004/12/dataca

n_factory"

…

<publishedDatacans>

 <datacan type="PRIVATE" name="DomainIndexService"

 desc="Index Service for my domain"/>

 <datacan type="PUBLIC" name="Sample-VoMember"

 desc="Index Service for sample VO"/>

</publishedDatacans>

…

2) Datacan setup

gais-datacan-config.xml contains serviceDataSweeper, installedProviders

and executedProviders elements. The serviceDataSweeper element assigns

 84

the execution period (the unit is second) of MoreDream Service Data Sweeper.

The targetData element, a child of serviceDataSweeper element, contains the

name and namespace of a Service Data to be checked periodically. The

installedProviders element specifies the core Service Data Providers. One or

more piece(s) of service data is produced by each execution of each Service

Data Provider specified in the executedProviders.

Note: For MoreDream Service Data Sweeper to operate correctly, you should

synchronize the time clock of resource in a VO.

…

xmlns="http://www.moredream.org/namespaces/2005/01/dataca

n"

…

<serviceDataSweeper period="30">

 <targetData namespace="http://www.moredream.org/ce/1.0"

 name="ComputingElement"/>

 <targetData namespace="http://www.moredream.org/se/1.0"

 name="SRBElement"/>

</serviceDataSweeper>

…

<installedProviders>

<providerEntry

class="org.moredream.ogsa.impl.base.providers.servicedata

.impl.MceScriptProvider" />

…

</installedProviders>

…

<executedProviders>

 85

<provider-exec:ServiceDataProviderExecution>

<provider-exec:serviceDataProviderName>

MceScriptProvider

</provider-exec:serviceDataProviderName>

<provider-exec:serviceDataProviderImpl>

org.moredream.ogsa.impl.base.providers.servicedata.i

mpl.MceScriptProvider

</provider-exec:serviceDataProviderImpl>

<provider-exec:serviceDataProviderArgs>

</provider-exec:serviceDataProvider Args>

<provider-exec:serviceDataName

xmlns:mce="http://www.moredream.org/ce/1.0">

mce:ComputingElement

</provider-exec:serviceDataName>

<provider-exec:refreshFrequency>30</provider-

exec:refreshFrequency>

<provider-exec:async>true</provider-exec:async>

</provider-exec:ServiceDataProviderExecution>

…

</executedProviders>

…

3) How to register datacans to GAIS-Vo-Roster Service

You can register some datacans by editing gais-vo-roster-config.xml. datacan

element, a child of registeredDatacans element, specifies the domain,

handle and description of a registered datacan. At below example, the

Sample-VoMember datacan will be registered in the VO managed by this VO

roster service. The period attribute in datacanRegister element means how

often this VO roster service tries to register datacan entries to maintain

registration information in spite of the fault and error of resource in the VO.

 86

…

xmlns="http://www.moredream.org/namespaces/2005/01/vo_ros

ter"

…

<datacanRegister period="10"/>

<registeredDatacans>

<datacan domain="localhost.localdomain"

handle=http://127.0.0.1:8080/ogsa/services/base/gais/Data

canFactoryService/Sample-VoMember

desc="VoMember for Sample VO in localhost.localdomain"/>

</registeredDatacans>

4) VO Crawler Factory Service setup

You first should configure the location of VO roster service to query service

data and find service location in a VO by editing gais-vo-crawler-config.xml.

Register it by adding voRoster element. At below example, a local

VoRosterService will be used.

…

xmlns="http://www.moredream.org/namespaces/2005/01/vo_cra

wler"

…

<voRoster

handle="http://127.0.0.1:8080/ogsa/services/base/gais/VoR

osterService"/>

...

5) MCE provider setup (lrms-info.conf)

 87

Configure the type of your local scheduler by editing lrms-info.conf.

$ vi lrms-info.conf

...

LRMSType=PBS # PBS or FORK

…

6) MSE provider setup.

When MSE information provider initiates, it need some information about GSI.

They are the file path of user proxy and CA. This information is in gais-mse-

proxy.properties file.

$ vi gais-mse-proxy.properties

proxy=/tmp/x509up_<uid>

gridcas=/etc/grid-security/certificates/<hash#>.0

7) Registering a Resource Service to an Datacan Factory Service

The Service Data of any Grid service can be registered to GAIS Datacan

Factory Service using the core RegistryPublishProvider. The

RegistryPublishProvider should be configured in the WSDD of each resource

service (for example, RIPS or MMJFS) by the administrators of those services.

Note: The administrator of the Datacan Factory Service does not need to take

action in order for a new resource service to register.

(1) Create an XML configuration file for the registration in

$GLOBUS_LOCATION/etc/ data_registration_config.xml

<?xml version="1.0" encoding="UTF-8" ?>

<serviceConfiguration

 88

xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03

/OGSI"

xmlns:aggr="http://www.globus.org/namespaces/2003/09/da

ta_aggregator"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<registrations>

 <registration

registry="http://127.0.0.1:8080/ogsa/services/base/gais/D

atacanFactoryService/DomainIndexService"

 keepalive="true"

 lifetime="120"

 remove="true">

 <aggr:DataAggregation>

 <ogsi:params>

 <aggr:AggregationSubscription>

 <ogsi:serviceDataNames>

 <ogsi:name

xmlns:mce="http://www.moredream.org/ce/1.0">mce:Computing

Element</ogsi:name>

 </ogsi:serviceDataNames>

 <aggr:lifetime>60000</aggr:lifetime>

 </aggr:AggregationSubscription>

 </ogsi:params>

</aggr:DataAggregation>

 </registration>

 </registrations>

</serviceConfiguration>

(2) Edit the fields as appropriate. Most importantly, edit the registry attribute

 89

to refer to the Datacan Factory Service instance (datacan) you want to

register with. DataAggregation element contains service data name which

subscribes to the instance.

(3) You must add the RegistryPublishProvider operation provider to the

resource service's deployment descriptor in the Server Configuration file

(server-config.wsdd).

(4) Find service element (for example, <service name="base/gram

/ResourceInformationProviderService"…) definition for a resource

service.

(5) Then, add the following parameters in the service element:

<parameter name="operationProviders"

value="org.globus.ogsa.impl.core.registry.RegistryPublishProvider "/>

<parameter name="registrationConfig"

 value="etc/data_registration_config.xml"/>

8) Registering a Grid Service to an Datacan Factory Service

Any Grid Service Handle (GSH) can be registered to GAIS Datacan Factory

Service using the core RegistryPublishProvider. The RegistryPublishProvider

should be configured in the WSDD of each Grid service (for example,

PingService) by the administrators of those services.

Note: The administrator of the Datacan Factory Service does not need to take

action in order for a grid service to register.

(1) Create an XML configuration file for the registration in

$GLOBUS_LOCATION/etc/service_registration_config.xml

 90

<?xml version="1.0" encoding="UTF-8" ?>

<serviceConfiguration

xmlns:ogsi="http://www.gridforum.org/namespaces/2003/03/O

GSI"

xmlns:aggr="http://www.globus.org/namespaces/2003/09/data

_aggregator"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

<registrations>

 <registration

registry="http://127.0.0.1:8080/ogsa/services/base/gais/D

atacanFactoryService/ DomainIndexService "

 keepalive="true"

 lifetime="120"

 remove="true">

 </registration>

 </registrations>

</serviceConfiguration>

(2) Edit the fields as appropriate. Most importantly, edit the registry attribute

to refer to the Datacan Factory Service instance (datacan) you want to

register with.

(3) You must add the RegistryPublishProvider operation provider to the grid

service's deployment descriptor in the Server Configuration file (server-

config.wsdd).

(4) Find service element (for example, <service name="core/ping/

PingService"…) definition for a grid service.

 91

(5) Then, add the following parameters in the service element:

<parameter name="operationProviders"

value="org.globus.ogsa.impl.core.registry.RegistryPub

lishProvider "/>

<parameter name="registrationConfig"

value="etc/service_registration_config.xml"/>

9) Registering GAIS information providers to RIPS

GAIS information providers should be registered to RIPS as follows

($GLOBUS_LOCATION/etc/rips-service-config.xml). They produce

{http://www.moredream.org/ce/1.0}ComputingElement and

{http://www.moredream.org/se/1.0} SRBElement as Service Data.

(1) Register MCE Information Provider.

$ vi $GLOBUS_LOCATION/etc/rips-service-config.xml

...

<installedProviders>

<providerEntry

class="org.globus.ogsa.impl.base.providers.servi

cedata.impl.ScriptExecutionProvider"

handler="jobDataHandler"/>

 <providerEntry

class="org.globus.ogsa.impl.base.providers.servicedata.im

pl.HostScriptProvider" />

 <providerEntry

class="org.moredream.ogsa.impl.base.providers.servicedata

.impl.MceScriptProvider" />

 </installedProviders>

...

<executedProviders>

 92

...

<provider-exec:ServiceDataProviderExecution>

 <provider-exec:serviceDataProviderName>

MceScriptProvider

</provider-exec:serviceDataProviderName>

 <provider-exec:serviceDataProviderImpl>

org.moredream.ogsa.impl.base.providers.servicedata

.impl.MceScriptProvider</provider-

exec:serviceDataProviderImpl>

 <provider-exec:serviceDataProviderArgs>

 </provider-exec:serviceDataProviderArgs>

 <provider-exec:serviceDataName

xmlns:mce="http://www.moredream.org/ce/1.0">mce:Computing

Element

</provider-exec:serviceDataName>

 <provider-exec:refreshFrequency>30

</provider-exec:refreshFrequency>

 <provider-exec:async>true</provider-

exec:async>

 </provider-exec:ServiceDataProviderExecution>

...

</executedProviders>

...

(2) Register MSE Information Provider.

$ vi $GLOBUS_LOCATION/etc/rips-service-config.xml

...

<installedProviders>

<providerEntry

class="org.globus.ogsa.impl.base.providers.servi

 93

cedata.impl.ScriptExecutionProvider"

handler="jobDataHandler"/>

 <providerEntry

class="org.globus.ogsa.impl.base.providers.servicedata.im

pl.HostScriptProvider" />

 <providerEntry

class="org.moredream.ogsa.impl.base.providers.servicedata

.impl.SRBScriptProvider" />

 </installedProviders>

...

<executedProviders>

...

<provider-exec:ServiceDataProviderExecution>

 <provider-exec:serviceDataProviderName>

SRBScriptProvider</provider-

exec:serviceDataProviderName>

 <provider-exec:serviceDataProviderImpl>

org.moredream.ogsa.impl.base.providers.servicedata

.impl.SRBScriptProvider

</provider-exec:serviceDataProviderImpl>

 <provider-exec:serviceDataProviderArgs>

</provider-exec:serviceDataProviderArgs>

<provider-exec:serviceDataName

xmlns:mse="http://www.moredream.org/mse/1.0"

>mse:SRB

</provider-exec:serviceDataName>

 <provider-

exec:refreshFrequency>30</provider-exec:refreshFrequency>

 <provider-exec:async>true</provider-

exec:async>

 94

 </provider-exec:ServiceDataProviderExecution>

...

</executedProviders>

...

10) Enabling OGSA Service Browser GUI

If you want to use the OGSA Service Browser GUI, you will need the GUI

control panels for the GAIS Service, which is configured in a different file. Add

the following lines to the client-gui-config.xml file in $GLOBUS_LOCATION

…

<panel portType="DatacanFactoryPortType"

 class="org.moredream.ogsa.gui.DatacanFactoryPortTypePanel"/>

 <panel portType="VoRosterPortType"

 class="org.moredream.ogsa.gui.VoRosterPortTypePanel"/>

 <panel portType="VoCrawlerFactoryPortType"

class="org.moredream.ogsa.gui.VoCrawlerFactoryPortTypePanel"/>

…

2.2.3.4. Starting

A. Starting GAIS Service

Now, let’s test your GAIS services installation. Verify whether the installation is

okay or not as follows.

1) To start GT3.2.x container, run as GT administrator:

 $ cd $GLOBUS_LOCATION

 $ bin/globus-start-container

 95

2) To start GT3.2.x service browser, run:

 $ bin/globus-service-browser

3) Find a VO Crawler Factory Service at Service Group Entry Inspection of

ContainerRegistry Servcie. By double clicking of that, the VO Crawler Factory

Service browser will be displayed.

4) Query “ComputingElement” Service Data with “http://www.moredream.org/ce/1.0”

namespace at find-vo-data tab of VO Query. If “mce:ComputingElement” is shown,

your installation is successful.

5) Query with “service” pattern at find-vo-service tab of VO Query. In case of

successful installation, registered GSH will be shown.

B. Starting GAIS Portlets

Next, let’s test your GAIS portlets installation. Verify whether the installation is

okay or not as follows.

1) To start Jakarta Tomcat container, run as Tomcat administrator:

 $ cd $CATALINA_HOME

 $ bin/startup.sh

2) Browse the following URL

 http://<hostname>:<port>/gridsphere/gridsphere

3) Login with the appropriate ID

4) Click the Configuration link of the Information Service tab

5) Configure the GSH of your VO Crawler Factory Service.

2.3 Using GAIS

 96

How about your installation, successful or failed? We expect your successful

installation & configuration. Now, let’s use GAIS in real Grid environment. We

assume that there is a KMI (Korea Middleware Initiative) VO at Figure 1-23.

GAIS services can be deployed as like following Table 1-4.

Table 1-4. KMI VO configuration

Service/Provider Machine name with the service/provider

DFS sdd107, eros01, vega01

VRS gais

VCFS sdd107, eros01, vega01, gais

MCE provider
orin01,nova01, eros01, nova01 Front node of cluster

MSE provider sdd107

Note. To obtain the information that is produced in MCAT-enabled SRB Server,

contact the admin of MCAT-enabled SRB Server and obtain a SRB account.

eros (13 nodes)

DFS+VCFS

DFS+VCFS
+MCEP+RMS

VRS+VCFSJSS+GSS

Portal

sdd107

gaisgrasp

portal

•DFS: Datacan Factory Service
•VRS: VO Roster Service
•VCFS: VO Crawler Factory Service
•JSS: Job Submission Service
•GSS: Grid Scheduling Service
•RMS: Resource Mgmt Service
•MCEP: Moredream CE Provider
•MSEP: Moredream SE Provider

orion (16 nodes)

eros01 vega (12 nodes)

DFS+VCFS
+MCEP+RMS

vega01

KMI Testbed

orion01

MCEP+RMS

Figure 1-23 KMI VO

 97

2.3.1 Querying the GAIS
GAIS has two type of query. One is find-vo-data and the other is find-vo-

service. You can find Service Data in a VO using find-vo-data, and get the

GSH (Grid Service Handle) of a Grid Service in a VO through find-vo-service.

2.3.1.1 Querying Service Data
The following code snippet describes the process to obtain the information in

a VO. The type of result is the Element class. You can variously translate the

format of this result through the AnyHelper class.

…

Element result = null;

VoCrawlerPortType voCrawler = null;

try {

 OGSIServiceGridLocator gridLocator

= new OGSIServiceGridLocator();

 Factory factory

 = ridLocator.getFactoryPort(this.defaultEndpoint);

 GridServiceFactory voCrawlerFactory

= new GridServiceFactory(factory);

 LocatorType locator

 = voCrawlerFactory.createService();

 VoCrawlerServiceGridLocator voCrawlerLocator

= new VoCrawlerServiceGridLocator();

 voCrawler = voCrawlerLocator.getVoCrawlerPort(locator);

 ExtensibilityType queryResult

= voCrawler.findVoData(queryExpression);

 98

 if (queryResult.get_any() == null) {

 // a null any in the case of an xpath query means

//results

 Object obj

= AnyHelper.getAsSingleObject(queryExpression);

 if (obj instanceof

 ServiceDataXPathQueryExpressionType) {

 throw new Exception("XPath Query: No results found");

 }

 }

 result = AnyHelper.getAsParentElement(queryResult);

} catch (Exception e) {

 e.printStackTrace();

} finally {

 try {

 if(voCrawler != null) {

 voCrawler.destroy();

 }

 } catch (Exception e1) {

 e1.printStackTrace();

 }

}

…

2.3.1.2 Querying the GSH
find-vo-service is a wrapper of find-vo-data to facilitate the discovery of a

Grid Service. The type of result is the array of the String class.

 99

…

String[] result = null;

VoCrawlerPortType query = null;

try {

 OGSIServiceGridLocator gridLocator = new OGSIServiceGridLocator();

 Factory factory = gridLocator.getFactoryPort(this.defaultEndpoint);

 GridServiceFactory queryFactory = new GridServiceFactory(factory);

 LocatorType locator = queryFactory.createService();

 VoCrawlerServiceGridLocator queryLocator

 = new VoCrawlerServiceGridLocator();

 query = queryLocator.getVoCrawlerPort(locator);

 result = query.findVoService(pattern);

} catch (Exception e) {

e.printStackTrace();

} finally {

try {

if(query != null) {

 query.destroy();

 }

} catch (Exception e1) {

 e1.printStackTrace();

}

}

…

 100

2.4. Writing out the MoreDream

Providers

Before you read this material, visit http://www-

unix.globus.org/toolkit/docs/3.2/infosvcs/ws

/developer/servicedataproviders.html. This section is based on that document.

2.4.1 Service Data Providers

Service Data Provider components consist of the

ServiceDataProviderManager Java class and one or more “plug-in”

ServiceDataProvider classes, which are regularly executed by the Service

Data Provider Manager (using Java TimerTasks). These provider plug-in

programs can be the supplied providers that are part of GT3.2 or user-created,

custom providers.

A valid provider is defined as any Java class that implements at least one of

three predefined Java interfaces (SimpleDataProvider, DOMDataProvider,

and AsyncDataProvider), and generates a well-formed, compatible XML

document as the output of its execution.

"Well-formed" above means that the XML document can be parsed in any

environment, i.e., any parsing tools written in any programming language can

be used. “Compatible” above means a form compatible with the Service Data

Provider Manager, i.e., a Java output stream or DOM representation.

2.4.2 Core GT3.2 Service Data Providers

GT3.2 supplies the following Service Data Providers:

SimpleSystemInformationProvider

 101

HostScriptProvider

AsyncDocumentProvider

ScriptExecutionProvider

2.4.3 Provider interfaces

The Service Data Provider interfaces are designed to support execution in

either a synchronous ("pull") mode or asynchronous ("push") mode. It is up

to the developer to choose the appropriate provider interface to implement,

based on specific application needs. There are three provider interfaces

SimpleDataProvider, DOMDataProvider, and AsyncDataProvider.

2.4.4 Creating Custom Service Data Providers

Service Data Providers can be as simple or as complicated as the situation

requires. The baseline case requires only that the provider developer create a

Java class implementing the functions of one interface – SimpleDataProvider

– whose purpose is to produce XML output in the form of a Java

OutputStream as the result of its execution.

The following steps are the essence of creating a new Service Data Provider:

1) Choose the provider interface to be implemented, based on application

needs or constraints.

2) Write code to produce your dataset as an XML document. This can

either be in an OS-specific external program, or native Java code that is

executed by the provider class itself.

3) Create an entry for the service in which you intend to run the provider in

your auxiliary service configuration file. This service is assumed to have

incorporated the functionality of the Service Data Provider Manager,

which parses the provider configuration file property specified in the

 102

service's deployment descriptor entry (in the default server configuration

file, server.config.wsdd), loads the provider, and executes it according to

parameters specified by a client service.

2.4.5 For example, MceScriptProvider

New information providers can be made easily by modifying some methods

and member variables in sample information providers. For example,

MceScriptProvider is very similar to HostScriptProvider that is supplied by

GT3.x. But MceScriptProvider provides lots of information including the basic

information about computing resources.

Let's make MceScriptProvider. First, choose AsyncDataProvider interface and

implement it. If you intend to modify HostScriptProvider, you have only to

change some member variables and method like composeDocument().

Second, write code to produce your dataset as an XML document. There are

many script files to make XML document in MceScriptProvider. Then, you

need to make a configuration file like gais-mce-providers.conf that defines the

sequence of each script execution. Finally, there are some steps to register

MceScriptProvider (See 3.8. Registering MoreDream information providers to

RIPS).

 103

Figure 1-24 MceScriptProvider UML Diagram

Figure 1-25 MceScriptProviderExecutionThread UML Diagram

 104

2.4.6 Service data provider input

Input to Service Data Provider execution is specified via a set of string

arguments to the run method. The argument string that gets passed to the

provider is the serviceDataProviderArgs member of the

ServiceDataProviderExecutionType structure that is passed to the

executeProvider port type method. The getDefaultArgs method may be used

to retrieve a default argument list for the provider. For Service Data Provider

input, the following is an example of an XML serialized form of parameters to

executeProvider :

<executedProviders>

...

<provider-exec:ServiceDataProviderExecution>

<provider-exec:serviceDataProviderName>MceScriptProvider

</provider-exec:serviceDataProviderName>

<provider-exec:serviceDataProviderImpl>

org.moredream.ogsa.impl.base.providers.servicedata.impl.M

ceScriptProvider</provider-exec:serviceDataProviderImpl>

<provider-exec:serviceDataProviderArgs>

</provider-exec:serviceDataProviderArgs>

<provider-exec:serviceDataName

xmlns:mce="http://www.moredream.org/ce/1.0">

mce:ComputingElement

</provider-exec:serviceDataName>

<provider-exec:refreshFrequency>30</provider-

exec:refreshFrequency>

<provider-exec:async>true</provider-exec:async>

</provider-exec:ServiceDataProviderExecution>

 105

...

</executedProviders>

2.4.7 Service data provider output

The output of a Service Data Provider is XML – either in the form of a Java

OutputStream or a Java org.w3c.dom document. This output becomes the

value of a Service Data Element and hence available as part of the hosting

service's Service Data Elements. These Service Data Elements can then be

used for the various WS Information Services functions.

2.4.8 Registering MoreDream information providers
to RIPS

GAIS information providers should be registered to RIPS as follows

($GLOBUS_LOCATION/etc/rips-service-config.xml). They produce

{http://www.more dream.org/ce/1.0} ComputingElement and

{http://www.moredream.org/se/1.0} SRBElement as service data.

2.4.8.1. Register MCE Information Provider

$ vi $GLOBUS_LOCATION/etc/rips-service-config.xml

...

<installedProviders>

<providerEntry

class="org.globus.ogsa.impl.base.providers.servicedata.im

pl. ScriptExecutionProvider" handler="jobDataHandler"/>

<providerEntry

class="org.globus.ogsa.impl.base.providers.servicedata.im

pl.HostScriptProvider" />

 106

<providerEntry

class="org.moredream.ogsa.impl.base.providers.servicedata

.impl.

MceScriptProvider" />

</installedProviders>

...

<executedProviders>

...

<provider-exec:ServiceDataProviderExecution>

<provider-exec:serviceDataProviderName>MceScriptProvider

</provider-exec:serviceDataProviderName>

<provider-exec:serviceDataProviderImpl>

org.moredream.ogsa.impl.base.providers.servicedata.impl.M

ceScriptProvider</provider-exec:serviceDataProviderImpl>

<provider-exec:serviceDataProviderArgs>

</provider-exec:serviceDataProviderArgs>

<provider-exec:serviceDataName

xmlns:mce="http://www.moredream.org/ce/1.0">

mce:ComputingElement

</provider-exec:serviceDataName>

<provider-exec:refreshFrequency>30</provider-

exec:refreshFrequency>

<provider-exec:async>true</provider-exec:async>

</provider-exec:ServiceDataProviderExecution>

...

</executedProviders>

...

2.4.8.2 Register MSE Information Provider.

 107

$ vi $GLOBUS_LOCATION/etc/rips-service-config.xml

...

<installedProviders>

<providerEntry

class="org.globus.ogsa.impl.base.providers.servicedata.im

pl. ScriptExecutionProvider" handler="jobDataHandler"/>

<providerEntry

class="org.globus.ogsa.impl.base.providers.servicedata.im

pl.HostScriptProvider" />

<providerEntry

class="org.moredream.ogsa.impl.base.providers.servicedata

.impl.SRBScriptProvider" />

</installedProviders>

...

<executedProviders>

...

<provider-exec:ServiceDataProviderExecution>

<provider-exec:serviceDataProviderName>SRBScriptProvider

</provider-exec:serviceDataProviderName>

<provider-exec:serviceDataProviderImpl>

org.moredream.ogsa.impl.base.providers.servicedata.impl.S

RBScriptProvider</provider-exec:serviceDataProviderImpl>

<provider-exec:serviceDataProviderArgs>

</provider-exec:serviceDataProviderArgs>

<provider-exec:serviceDataName

xmlns:mse="http://www.moredream.org/mse/1.0"> mse:SRB

</provider-exec:serviceDataName>

<provider-exec:refreshFrequency>30</provider-

exec:refreshFrequency>

<provider-exec:async>true</provider-exec:async>

 108

</provider-exec:ServiceDataProviderExecution>

...

</executedProviders>

...

 109

 3. MPICH-GX

3.1 Introduction

MPICH-GX is a patch of MPICH-G2 to extend some required functionalities.

MPICH-G2 is a well-defined implementation of Grid-enabled MPI, but it is

needed to be modified for supporting some requirements of Grid applications.

Thus, MPICH-GX provides useful functionalities for supporting the private IP

and fault tolerance

The rest of this chapter is organized as follows. In section 1.1, we describe

the architecture of MPICH-GX. Section 1.2 presents the functionalities

supporting the private IP and fault tolerance. We introduce two initialization

mechanism of MPICH-GX in section 1.3. Lastly, we provide client tools with

Java library in section 1.4

3.1.1 Architecture of MPICH-GX

Basically, MPICH-GX is based on MPICH-G2. Thus, it has similar architecture

of MPICH-G2 as shown in Figure1-26. It consists of the GX device, a proxy

daemon named nproxy, a local job manager called local-job-manager, a

package of Java library called CM (Coallocator for MPICH-GX) and client

tools based on Java. The GX device modifies ‘globus2 device’ of MPICH to

add required functions. The nproxy relays the messages of MPI processes

when the process is located in private IP clusters. The local-job-manager

invokes a process and monitors the status of the process. The CM is a

package of Java library for supporting the middlewares which are executing

MPICH-GX applications. Lastly, we bring client tools based on Java. Client

tools compose of gxrun as a tool for job submission and gxlrm as a deamon

 110

for local resource managerorl of ontion toolools based on java library. The

gxrun could submit a job through the gxlrm running in each distributed

resource.

As shown in Figure1-26, application developer can make MPICH-GX

applications by using standard MPI API. It can be mapped to the globus2

device passing through ADI layer. We modify the globus2 device, so that

some functions in MPICH-GX are different from MPICH-G2.

Figure 1-26 Architecture of MPICH-GX

3.1.2 Functionalities of MPICH-GX
MPICH-GX provides mainly two functionalities for supporting the private IP

and fault tolerance. In this section, we describe the details of two

functionalities.

3.1.2.1 Private IP Support

It is a well-known problem that MPICH-G2 does not support private IP clusters.

In MPICH-G2, processes communicate with each other based on IP

addresses. Thus, it cannot support private IP clusters by the nature.

To support private IP clusters, MPICH-GX uses a communication relay

scheme combining the NAT service with a user level proxy named ‘nproxy.’ In

 111

this approach, only incoming messages are handled by a user-level proxy to

relay them into proper nodes inside the cluster, while the outgoing messages

are handled by the NAT service at the front-end node of the cluster. Figure 1-

27 shows the conceptual diagram of our relay scheme.

(a) Between two private IP clusters

(b) Between a private IP clusters + public IP cluster

Figure 1-27 Communication Relay Scheme in MPICH-GXs

 112

3.1.2.2 Fault Tolerant Support

We provide a checkpointing-recovery system for Grids. Our library requires no

modifications of application source codes, and it affects the MPICH

communication characteristics as less as possible. The features are that it

supports the direct message transfer mode and that all of the implementation

has been done at the low level, that is, the abstract device level.

Figure 1-27 describes the library structure of MPICH-GX for fault tolerant

support. Although fault-tolerance module has been implemented at the

abstract device level, please note that it is still user-level. It contains a

checkpoint toolkit, an atomic message transfer management, and a

connection re-establishment module. The checkpoint toolkit dumps the user-

level memory image into the stable storage on the request. Messages that are

in kernel memory or at network are assumed as in-transit messages. The

atomicity of message transfer at the abstract device level realizes fine grained

checkpoint timing compared to the higher-level approach, because it narrows

the code area that should be exclusive against the checkpoint procedure.

Figure 1-28 The Structure of MPICH-GX Device for Fault Tolerant

Support

 113

3.1.3 Initialization Mechanism

MPI applications need an initialization procedure that creates processes and

prepares necessary information for passing messages with each other. During

such procedure, two middleware-components should be involved; one is a

central manager to submit a MPI job to local resources; the other is a local

resource manager to launch the job to local resources via local batch

scheduler such as PBS. Here, we introduce two kinds of mechanisms that

initialize MPI processes: a file-based initialization that a central manager just

sends a file containing information of processes to local resource managers,

and a message-based initialization that the local resource manager and the

central manager send and receive messages with each other.

3.1.3.1 File-based Initialization

An initialization procedure depends on the functions given by middlewares.

For example, MPICH-G2 uses DUROC, which is a component of Globus

toolkit, to initialize MPI processes. Sometimes it can be very efficient, but it

makes the MPI library to be tied up by the middleware. Thus, the change of

Globus toolkit results in inevitable change of MPI library. This is the reason

why the MPICH-G2 cannot work with Globus toolkit 3.x. Therefore, we modify

the initialization procedure of MPICH-G2 which depends on DUROC

component to file-based initialization. It allows users to launch MPI

applications without DUROC. To use file-based initialization, users have to

make the file (we call it configuration file). As described in Figure1-29,

middlewares, including the central manager and the local resource manager,

could help you to run your MPI applications in convenient way. The central

manager could automatically create a configuration file and stage the file to

the local resource manager in each resource. But, you also can launch the

 114

applications manually without any launching program if you know the method

to make the configuration file. The contribution of the file-based initialization is

that it is independent of middlewares. Even though the Grid middleware is

changed more and more, we can launch the MPI application in a same way

when we use the file-based initialization.

Once the central manager sends the file to each local resource, because it

does not receive messages, the central manager could not detect the failure

of the job. Hence, you could not restart for failed job via file-based initialization.

Figure 1-29 File-based Initialization

3.1.3.2 Message -based Initialization

File-based initialization is very simple and easy to apply to middlewares,

including the central manager and the local resource manager, whereas it

cannot support to restart for failed job. Therefore, we provide another

mechanism called message-based initialization to support for fault-tolerance.

Because a central manager sends messages to local resource managers and

receives messages from local resource managers, the central manager could

know the failure of the process by getting the messages from the local

resource manager, as illustrated in Figure1-30.

 115

While the central manager must know the channel information of all

processes before job submission at file-based initialization, it could get the

channel information along with the ‘CHANNEL_INFO’ message from each

local resource manager after job submission. Once the central manager gains

the all ‘CHANNEL_INFO’ messages from participating local resource

managers, it sends the ‘CHANNEL_INFO_ACK’ message to each local

resource manager. Then, initialization procedure gets completed. In other

words, it gets ready for passing messages with each other.

We provide Java library called CM (Coallocator for MPICH-GX) to give a help

to implement message-based initialization. When the central manager and the

local resource manager transfer messages with each other via some

message passing protocols such as socket API, SOAP and etc., they could be

easily implemented through our Java library. You can refer the details of Java

library at section 3.1.4

Figure 1-30 Message-based Initialization

3.1.4 Java Library and Client Tools

We provide Java library called CM (Coallocator for MPICH-GX) based on

Java. The CM is some bundles of Java library for supporting the middlewares

 116

running MPICH-GX applications. Also, we bring some client tools to be

implemented by Java library. Client tools contain gxrun which is both a client

and a central manager, and gxlrm which is a local resource manager.

CM is mainly composes of two parts: one part is a bundle of packages related

to the central manager as depicted in Figure 1-31, and the other is a bundle of

packages related to the local job manager as illustrated in Figure 1-32.

Developers could easily implement not only client tools but also services

based on Globus Toolkit via CM.

Figure 1-31. UML Class Diagram Regarding to the Central Manager

 117

Figure 1-32. UML Class Diagram Regarding to the Local Resource

Manager

Client tools are implemented using CM library. Client tools compose of gxrun

as a tool for job submission and gxlrm as a deamon for local resource

manager as described in Figure 1-31. The gxrun could submit a job through

the gxlrm running in each distributed resource as illustrated in Figure 1-32.

Once each gxlrm gets the request from gxrun, the gxlrm submit the job

through local batch scheduler such as PBS. Then, PBS launches the local-

job-manager, which invoke a process.

The job schema is JRDL (Job & Resource Description Language). JRDL is an

extension of RSL2, which is a job description language used by Globus Toolkit

3.x. JRDL is mainly composes of two parts: one is elements related to a job,

including executable, path, and etc, and the other is elements related to

resources, which are preferences used to select proper resources by meta-

 118

scheduler. However, you do not have to use elements related to resources,

because current gxrun does not use meta-scheduler to select resources. You

can refer details of JRDL at user manual of GRASP

Currently, gxrun can support only for interactive job, not batch mode. Also,

gxrun does not use any authentication mechanism.

Figure 1-33 Client Tools to be Implemented via CM Library

Figure 1-34 Job Submission by Client Tools

3.2 Installation and Configuration

 119

3.2.1 Requirements

 OS: Linux (RedHat 7.3 or more are recommended)

 Installing Globus Toolkit 2.4.3 or more (But, 2.4.3 is required to use

nproxy)

 Extracting MPICH 1.2.6 source code from a tar ball

3.2.2 Installing Required Softwares

3.2.2.1 Installing Java SDK

Required for: Client tools

Recommended Versions: 1.4.x

Download Link: http://java.sun.com/j2se

3.2.2.2 Installing Globus Toolkit

1. Download all source code from http://www.globus.org

2. As globus, untar the source installer.

3. Make sure that ANT_HOME and JAVA_HOME are set, and that ant and

java are on your PATH.

4. Run

./install-gt3 /path/to/install

7. Configure the Globus Toolkit 3.2, looking through

http://www-unix.globus.org/toolkit/docs/3.2/installation/install_config.html

3.2.2.3 PHP4

PHP4 (command line interface) is required for Job Manager Script module in

gxlrm.

 120

The libxml2 module must be compiled with PHP.

Download the latest version of libxml2 from http://xmlsoft.org/sources/.

tar zxvf libxml2-2.6.16.tar.gz

cd libxml2-2.6.16/

./configure --prefix=/usr/local/libxml2 &>

configure.log

make &> make.log

make install &> install.log

The zlib library must be installed.

Download a latest PHP distribution from http://www.php.net/

cd /usr/local/src

tar zxvf php-4.3.9.tar.gz

cd php-4.3.9

./configure \

--enable-pcntl \

--with-dom=/usr/local/libxml2 --with-zlib-dir=/usr --

disable-cgi

make clean

make

make install

The configure option ‘--enable-pcntl’, which is for process control in PHP, is

required in job manager script module. The ‘--with-dom’ is required for XML

processing in PHP.

The ‘--with-zlib-dir’ is required for libxml2 in PHP.

3.2.2.4 OpenPBS and Cluster Configuration

Computing nodes in a cluster should be configured for rsh and ssh. The job

manager script module uses ssh for executing remote program in other

computing nodes in the cluster. The rsh have a problem to be used for this

 121

purpose. To configure ssh add host keys of all the computing nodes to

/etc/ssh/ssh_known_hosts of each computing nodes. The hostname in the

known_hosts file should be fully qualified domain name(FQDN).

3.2.3 Installing MPICH-GX

3.2.3.1 Download

http://kmi.moredream.org/downloads/index.php

You can download the file “mpich-gx-0.1.tar.gz” of MPICH-GX from the web

site written above. The file includes following three components. You could

install two packages(mpich-gx library and misc components) at local

resources, and gxrun binary package at client side

- mpich_1.2.6_gx-0.1.tar.gz: mpich-gx library

- gx-0.1.tar.gz: misc components including local job manager, java library

and client tools

- gxrun-0.1.tar.gz: gxrun binary package

3.2.3.2 Installation at Local Resource

As the globus account,

$ export GX_LOCATION=/usr/local/mpich-gx

$ tar zxvf mpich_1.2.6_gx-0.1.tar.gz

$ cd ./mpich-1.2.6

$./configure --with-device=ft_globus:-flavor=gcc32dbg -

-prefix=$GX_LOCATION

$ make

$ make install

$ tar zxvf gx-0.1.tar.gz

 122

$ cd ./gx

$./install-gt3-gx –gx-dir $GX_LOCATION $GLOBUS_LOCATION

, where GX_LOCATION is a location of installation regarding to MPICH-GX

and GLOBUS_LOCATION is a location of installation for Globus Toolkit.

3.2.3.3 Installation at Client

As a user account,

$ tar zxvf gxrun-0.1.tar.gz

$ cd ./gxrun

3.2.4 Configuration

3.2.4.1 Startup gxlrm on the front-end node for client tools

If you want to launch the job through gxlrun, you have to invoke a daemon

called gxlrm at local resources. Before invoking the gxlrm, you have to

configure the information related to the log and the globus location to

“~/.gx.conf” file as follows.

$ vi ~/.gx.conf

log.level=error

#log.file=/usr/local/gt3.2.1/var/gxlrm.log

#log.append=true

globusLocation=/usr/local/gt3.2.1

Then, you can launch a gxrlm at local resources as follows:

$ cd $GLOBUS_LOCATION/sbin

$./gxlrm &

 123

3.2.4.2 Startup NAT Service and nproxy on the front-end node

Our message relay scheme uses NAT service to send a message from a

private IP node to others. You can startup Nat service by followings below

commands. See [?] to learn more about NAT services.

As a root,

 # vi /etc/rc.d/rc.local

 Iptables –A POSTROUTING –t nat –o eth0 –j MASQURADE

 echo 1> /proc/sys/net/ipv4/ip_forward

 :wq

 # /etc/init.d/xinetd restart

Once you startup NAT service, you have to launch a deamon called ‘nproxy’,

where is located in $GLOBUS_LOCATION/sbin.

 $ cd $GLOBUS_LOCATION/sbin

 $./nproxy &> ../var/nproxy_log.txt &

3.2.4.3 Set environmental variables for File-based
initialization

If you want to invoke a job by file-based initialization instead of our client tools,

you have to follow following directions. Add variables “FILENAME” and

“FRONT_NAME” in your shell configuration script. FILENAME represent the

name of configuration file for file-based initialization. FRONT_NAME stands

for the FQDN of front-end node of the cluster. If you use public IP clusters,

you need not to specify FRONT_NAME in your shell configuration.

 124

vi ~/.bashrc

export FILENAME={the name of process file}

export FRONT_NAME={FQDN of front-end node}

export FILE_BASED=1

: wq

source ~/.bashrc

3.3 Running MPI applications

In this Section, we describe the ways to launch MPI applications by using

MPICH-GX. Assume that a user hope to run a simple CPI program on 4

machines. CPI is a program to calculate pi.

3.3.1 Compile your MPI program

You have to compile your MPI application by using MPICH-GX library. It is not

different from the general compilation method of MPI programs.

mpicc –o gx_cpi cpi.c

3.3.2 Launching your MPI applications by gxrun

Make sure that gxlrm is running in local resources.

3.3.2.1 Configuration

You might configure the information related to the log and the port range of

socket server to “~/.gxrun” file as follows. You do not have to make a

 125

configuration file.

$ vi ~/.gxrun

log.level=error

#log.file=filename

#log.append=true

serverPortBegin=16000

serverPortEnd=17000

3.3.2.2 Writing a job

As mentioned above, gxlrm’s job template is JRDL. Follows is an example to

run a simple CPI on remote two clusters, where each cluster use two nodes.

And the period to checkpoint is 30 sec.

$ vi cpi.xml

<?xml version="1.0" encoding="UTF-8"?>

<jrdl

xmlns="http://www.moredream.org/namespaces/2003/09/jrdl">

 <job>

 <executable>

 <path>

 <stringElement value="cpi"/>

 </path>

 </executable>

 <directory>

 <path>

 <stringElement value="/home/globus"/>

 </path>

 </directory>

 126

 <environment>

 <hashtable>

 <entry name="LD_LIBRARY_PATH">

 <stringElement

value="/usr/local/gt3.2.1/lib"/>

 </entry>

 </hashtable>

 <hashtable>

 <entry name="CKPT_PERIOD">

 <stringElement value="30000"/>

 </entry>

 </hashtable>

 </environment>

 <stdout>

 <pathArray>

 <path>

 <stringElement value="stdout"/>

 </path>

 </pathArray>

 </stdout>

 <stderr>

 <pathArray>

 <path>

 <stringElement value="stderr"/>

 </path>

 </pathArray>

 </stderr>

 <jobType>

 <enumeration>

 <enumerationValue>

 127

 <xmpi/>

 </enumerationValue>

 </enumeration>

 </jobType>

 <subjob>

 <resourceManagerContact>

 <string>

 <stringElement

value="solar16.gridcenter.or.kr"/>

 </string>

 </resourceManagerContact>

 <jobManagerType>

 <enumeration>

<enumerationValue><pbs/></enumerationValue>

 </enumeration>

 </jobManagerType>

 <count>

 <integer value="2"/>

 </count>

 </subjob>

 <subjob>

 <resourceManagerContact>

 <string>

 <stringElement

value="solar21.gridcenter.or.kr“/>

 </string>

 </resourceManagerContact>

 <jobManagerType>

 128

 <enumeration>

<enumerationValue><pbs/></enumerationValue>

 </enumeration>

 </jobManagerType>

 <count>

 <integer value="2"/>

 </count>

 </subjob>

 </job>

</jrdl>

3.3.2.3 Submitting the job

Staging executable to each cluster

$ scp /home/globus/cpi user@solar16:/home/globus/cpi

$ scp /home/globus/cpi user@solar21:/home/globus/cpi

Submitting the job

$ gxrun cpi.xml

Request a new job 700

Job is done.

$

3.3.3 Launching your MPI applications based on
File-based initialization

You can launch your application in various ways. You can use original ‘mpirun’

or ‘globusrun’ or you can even launch your application manually without any

launching program.

 129

3.3.3.1 Manual Launching

Manual launching must be a very inconvenient way, but it can help you

understand entire steps of launching MPI applications.

A. Making ‘process_info’ file:

As stated above, you should make a configuration file to help MPI processes

with performing the initialization procedure. Following is an example when a

user runs ‘cpi’ application on 2 clusters each of which has 2 nodes. Details of

‘process_info’ file are described in Section 4.

vi process_info

4 2 9292

Protocol information of each process

0 0 0 2 33501 36000 nova03.gridcenter.or.kr nova01.gridcenter.or.kr

1 0 1 2 33501 36000 nova04.gridcenter.or.kr nova01.gridcenter.or.kr

2 1 0 2 33501 36000 solar18.gridcenter.or.kr solar18.gridcenter.or.kr

3 1 1 2 33501 36000 solar19.gridcenter.or.kr solar19.gridcenter.or.kr

 # cp process_info FILE_NAME

B. Staging ‘process_info’ file to all execution nodes:

 # echo $FILE_NAME

 /home/globus/process_info

 # scp /home/globus/process_info ser@execution_node:FILE_NAME

C. Staging executables:

 # scp /home/globus/cpi user@execution_node:/home/globus/cpi

 130

D. Run executables on each remote machine:

 nova03]# /home/globus/cpi RANK=0

nova04]# /home/globus/cpi RANK=1

solar18]# /home/globus/cpi RANK=2

solar19]# /home/globus/cpi RANK=3

3.3.3.2 Launching by ‘mpirun’

You also can launch MPI application by using old ‘mpirun.’

A. Configuration:

Make sure that two clusters are properly configured regarding to ssh and rsh

with each other

B. Making and Staging ‘process_info’ file:

It is same with above direction of manual launching

C. Making ‘machine file’:

 # vi machinefile

 “cluster1/jobmanager-pbs” 2

 “dccsun/jobmanager-pbs” 2

 :wq

D. Launching executable by using ‘mpirun’:

 # mpirun –np 4 –machinefile machinefile –s cpi

3.3.4 How to make ‘process_info’ file?

We will describe the details of ‘process_info’ file as depicted in Figure 1-35.

 131

Both dccsaturn and dccneptune exist on private IP domiain, whereas both

cluster203 and cluster202, where hostname is same domain name with front’s,

are running on public IP domain

4 2 9292

This is Init file example (You can use # for commenting something

Shared information (MyWorldSize, nsubjobs, unique value)

Protocol information of each process

0 2

1 2

0 2

1 2

0
1

2

3

33501

33501

33501

33501

36000

36000

36000

36000

dccsaturn.sogang.ac.kr

dccneptune.sognag.ac.kr

cluster203.yonsei.ac.kr

cluster202.yonsei.ac.kr

dccsun.sogang.ac.kr

dccsun.sogang.ac.kr
cluster203.yonsei.ac.kr

cluster202.yonsei.ac.kr

Global_rank

Rank_in_my_subjob
My_subjob_size

Listen port

Barrier port
hostname

Front hostname

Figure 1-35 An example of process_info file

,

 132

Chapter 2

KGridCA

 133

1. Introduction

1.1. What is KGridCA?

CA (Certificate Authority) is an entity in PKI (Public Key Infrastructure), which

is responsible for establishing and vouching for the authenticity of public keys.

KGridCA is a software for constructing a certificate authority in a simple

manner. KGridCA can be accessed by web browsers, and generations of

certificate are done by OpenSSL. Issued certificates are stored and managed

by DBMS.

1.2. Architecture of KGridCA

Figure 2-1 is the architecture of KGridCA. A certificate requestor access to the

public web server to upload his CSRs(Certificate Signing Request). Uploaded

CSR are stored in a database. The administrator accesses to an internal web

server to issue a certificate. The internal web server should be protected from

outside world for security. Issued certificates are stored in the database, which

can be downloaded by the certificate requestor through the public web server.

Figure 2-1 Architecture of KGridCA

 134

In strict conditions, the public web server and the internal web server should

be separated in different hosts, and the internal web server should be

managed securely. But in a less strict condition, the public web server and the

internal web server can share the same physical host depicted in Figure 2-2.

Figure 2-2 Architecture of KGridCA in a less strict condition

2. Installation and Configuration

2.1 Requirements

KGridCA is implemented in php language and use MySQL database to store

certificates, CSRs, and other information. It is installed a web server such as

Apache. OpenSSL is also required to generate certificate, CRL.

The following softwares are required:

- MySQL Database (3.23.x or 4.0.x)

- PHP4 + Apache Web server (PHP 4.3.x, Apache 1.3.x)

- OpenSSL (0.9.7e)

 135

2.2. Installing required software

2.2.1. Installing MySQL Database

Download a latest MySQL distribution from http://www.mysql.com/.

Move to a temporary directory and extract the distribution file.

cd /usr/local/src (download the distribution file in this directory)

tar zxvf mysql-4.0.16.tar.gz

cd mysql-4.0.16

Configure and compile the source

./configure --prefix=/usr/local/mysql --with-mysqld-user=root

make

Copy the compiled binaries to the install location.

make install

Make a symbolic link for ‘mysql’ command line client, or add it to the $PATH

variable.

ln -s /usr/local/mysql/bin/mysql /usr/local/bin/mysql

Database initialization

/usr/local/mysql/bin/mysql_install_db

Start MySQL server daemon

/usr/local/mysql/bin/mysqld_safe -u root &

To start MySQL server daemon during system startup, add a line to the

 136

rc.local file.

vi /etc/rc.d/rc.local

...

/usr/local/mysql/bin/mysqld_safe -u root &

...

Refer to other books or documents about managing and using MySQL.

2.2.2. Installing PHP4 + Apache Web Server

Apache should be configured before compiling PHP.

Download a latest apache distribution from http://www.apache.org/

cd /usr/local/src

tar zxvf apache_1.3.33.tar.gz

cd apache_1.3.33/

./configure

Download a latest PHP distribution from http://www.php.net/

cd /usr/local/src

tar zxvf php-4.3.11.tar.gz

cd php-4.3.11

./configure --with-apache=../apache_1.3.33/ \

 --with-config-file-path=/etc/httpd --with-

mysql=/usr/local/mysql

make clean

make

make install

Compile the Apache web server and install it.

cd /usr/local/src/apache_1.3.33/

./configure --prefix=/usr/local/apache \

 137

 --activate-module=src/modules/php4/libphp4.a

make clean

make

make install

Setup the PHP installation

cd /usr/local/src/php-4.3.11

mkdir /etc/httpd; cp php.ini-dist /etc/httpd/php.ini

Setup the Apache web server

vi /usr/local/apache/conf/httpd.conf

 ...

LINE 808(approx.): add a line

 # PHP

 AddType application/x-httpd-php .php

</IfModule>

 ...

 :wq

{Start | stop | restart} the apache web server

/usr/local/apache/bin/apachectl {start | stop | restart}

2.3. Installing KGridCA

2.3.1. Download and Extract

You can download the distribution files from KMI web site

http://kmi.moredream.org/.

Download and untar the distribution file under your web server root directory.

 138

$ cd /usr/local/apache/htdocs

Download KGridCA-1.0.tar.gz from http://kmi.moredream.org/

$ tar zxvf KGridCA-1.0.tar.gz

$ cd KGridCA-1.0

Directory structure is as follows:

KGridCA-1.0

|-- img

|-- inc

|-- rootca # root ca repository

|-- sql # MySQL commands

|-- ssl.conf # OpenSSL configuration

`-- tmp # temporary file

2.3.2. Configuration

Create a database named ‘gridca’ and make tables:

$ mysql [–u user] [–p]

mysql> create database gridca;

mysql> quit

$ cd sql

$ mysql [–u user] [-p] gridca < create_tables.sql

Refer to other documents to use mysql command.

Open inc/config.php to edit the database connection parameters and others:

$ vi inc/config.php

database access

$conf[dbhost] = "localhost"; # database server

$conf[dbuser] = "root"; # database user

 139

$conf[dbpasswd] = ""; # database user's password

$conf[dbname] = "gridca"; # database name

path and location

$conf[openssl] = "/usr/local/bin/openssl"; # openssl path

$conf[gridca_path] = "/www/html/GridCA";

$conf[rootca_path] = "$conf[gridca_path]/rootca";

openssl config files

$conf[openssl_config_1] = "$conf[gridca_path]/ssl.conf/ssl.ca.conf";

$conf[openssl_config_2] = "$conf[gridca_path]/ssl.conf/ssl.general.conf";

$conf[tmpdir] = "/www/html/GridCA/tmp"; # temporary directory

$conf[tmpdir_prefix] = "gridca_";

$conf[clear_files] = 1; # if true, clear generated files

$conf[sitehome] = "https://ca.example.com/GridCA"; # home URL

$conf[managerhome] = "http://admin.example.com/GridCA"; # home

URL

$conf[href_prefix] = "/GridCA";

$conf[https_only] = false;

$conf[crl_scp_prefix] = "host.example.com:/path/to/CRL";

administration

$conf[admin_sendmail] = 0; # if true, send emails to admin

$conf[admin_email] = "ca@example.com"; # administrator email address

$conf[project_name] = "GridCA"; # project name

$conf[allow_admin_login] = true;

timezone

$conf[gmt_to_local] = 3600*9; # local time shift based on GMT time in

seconds

 140

$conf[timezone_str] = 'KST[GMT+9]'; # time zone

database tables (from/sql/db.mysql.sql)

$conf[dbtblcert] = "gridca_cert"; # cert table name

$conf[dbtblcsr] = "gridca_csr"; # csr table name

$conf[dbtblpasswd] = "gridca_passwd"; # passwd table name

$conf[dbtbllog] = "gridca_log"; # log table name

$conf[dbtblsn] = "gridca_sn"; # serial number table name

cookies configuration

$conf[cookie_prefix] = 'GRIDCA_'; # cookie variable prefix

$conf[secure_cookie] = 1; # use hashed token cookie value

$conf[static_cookie] = "MY_COOKIE_STRING";

$conf[min_passwd_len] = 4; # the minimum length of passwords

$conf[root_ca_valid_days] = 365*5;# valid period of root CA

$conf[cert_valid_days] = 365; # valid period of certificates

$conf[default_org1] = "Grid"; # default value of organization name 1

$conf[default_org2] = "Globus";# default value of organization name 2

$conf[default_country] = "KR"; # default value of country code

$conf[newtime] = 3600*24; # displayed as new for newtime in seconds

$conf[ipp] = 10; # items per page

$conf[session_check_period] = 60;

2.3.3. Configure Administration Login Name

As an administrator, you should add an admin account to login KGridCA.

$ cd sql

$ php insert_admin.php “admin” “password” “admin@example.com”

> sql

where “admin” is the administrator’s account name, “password” is his

 141

password, and the last one is the email address.

$ mysql [-u user] [-p] gridca < sql

Open a web browser and load index.php.

Click ‘Login’ and input the administrator’s account and password created

above.

If the login was successful, You will see the following page:

 142

2.3.4. Generating Root Certificate

Click ‘Generate Self-Signed Root CA’ in the main menu.

The ‘rooca’ directory should be writable by the web server daemon.

Temporary change the mode 777 in this step. (chmod 777 rootca)

.crt, .key, .info files are generated.

 143

Chapter 3

KMI-GridSphere

 144

1. Introduction

1.1 What is Gridsphere?

GridSphere is the open-source porltet based portal framework which is part of

the Gridlab project funded by the European Commission under the Fifth

Framework Programme of the Information Society Technology. Gridsphere is

compliant 100% JSR 169 Portlet API and supports higher-level model for

building complex portlets using visual beans and the GridSphere User

Interface tag lib

We develop the basic portlets for using Grid environment to support

implementation of Grid portal and implement Bio Informatics Grid Portal and

Data Grid portal for Belle Code using Gridsphere. Also, we implement

MoreDream Grid service portlets - GRASP job submission porlet, GAIS

information

We have modified bannaer and GuestLayOut Pages. This product includes

software developed by and/or derived from the GridSphere Project

(http://www.gridsphere.org/).

2. Installation and Configuration

2.1 Requirements

- OS : Linux (RedHat 7.3 or more are recommended)

- Java 2 Platform, Standard Edition 1.3.1 or 1.4.2+

- Ant 1.5.3-1+

 145

- Tomcat 4.1+ (not tested in Tomcat 5.+)

2.2. Installing required software

2.2.1. Installing Java 2Platform, Standard Edition

You can download Java 2 SDK from http://java.sun.com. Following is

described about binary installation in Redhat Linux.

1. Login as root

$ su –

2. Download and extract the downloaded file.

cd $JDK_DOWNLOAD_DIRECTORY

chmod 755 j2sdk-1_X_X-linux-i586.bin

./j2sdk-1_X_X-linux-i586.bin

Sun Microsystems, Inc.

 Binary Code License Agreement

 for the

JAVATM 2 RUNTIME ENVIRONMENT (J2RE), STANDARD EDITION,

VERSION 1.X.X_X

...

Do you agree to the above license terms? [yes or no] yes

3. Run the rpm command to install. It is installed in /usr/java/ j2sdk1.X.X by

default.

rpm –ivh j2sdk-1_X_X-linux-i586.rpm

4. Set Java environment variables.

$ vi ~/.bashrc

export JAVA_HOME=/usr/java/j2sdk1.X.X

 146

export PATH=$JAVA_HOME/bin:$PATH

2.2.2 Installing Ant

You can download Ant from http://ant.apache.org.

1. Login as root.

$ su –

2. Extract the downloaded file.

cd $ANT_DOWNLOAD_DIRECTORY

tar zxvf apache-ant-1.X.X-X-bin.tar.gz

3. Move to the extracted files installation directory.

mv apache-ant-1.X.X-X /usr/local/

4. Set Ant environment variables.

vi ~/.bashrc

export ANT_HOME=/usr/local/apache-ant-1.X.X-X

export PATH=$ANT_HOME/bin:$PATH

2.2.3. Installing Tomcat

You can download Ant from http://jakarta.apache.org/tomcat.

1. Login as root.

$ su – tomcat

2. Extract the downloaded file.

cd $TOMCAT_DOWNLOAD_DIRECTORY

tar zxvf jakarta-tomcat-4.X.X.tar.gz

3. Move to the extracted files installation directory.

mv jakarta-tomcat-4.X.X /usr/local/

4. Set Ant environment variables.

vi ~/.bashrc

export CATALINA_HOME=/usr/local/ jakarta-tomcat-4.X.X

 147

2.3. Installing Gridsphere

2.3.1. Downloading and extraction

 You can download from http://www.gridcenter.or.kr/kmi and

http://www.gridsphere.org. We recommend to download from

http://www.gridcenter.or.kr/kmi. Gridsphere is being developed and modified

continually, to use the portlets in KMI packages you must download KMI

version.

2.3.2. Installation

1. Extract the downloaded file.

$ cd $GRIDSPHERE_DOWNLOAD_DIRECTORY

$ tar xvzf gridsphere-kmi.1.X.X.tar.gz

From now on, $GRIDSPHERE_HOME is

$GRIDSPHERE_DOWNLOAD_DIRECTORY/gridsphere.

2. Install Gridsphere

Using Ant, you can install Gridsphere to Tomcat Web Application.

$GRIDSPHERE_HOME/build.xml supports the following tasks:

install -- builds and deploys GridSphere, makes the

documentation and installs the database

clean -- removes the build and dist directories

including all the compiled classes

compile -- compiles the GridSphere source code

deploy -- deploys the GridSphere framework and all

portlets to a Tomcat servlet container located at

$CATALINA_HOME

create-database - creates a new, fresh database with

 148

original GridSphere settings, this wipes out your current

database!

docs -- compiles all GridSphere docbook documentation

and builds the Javadoc documentation from the source code

run-tests -- runs all Junit tests inside the Tomcat

container using the Jakarta Cactus framework

$ cd gridsphere

$ ant install

Type ”y” about question of Gridsphere License Agreement and Gridsphere is

installed to $CATALINA_HOME/webapp/gridsphere.

2.3.3. Configuration of Tomcat Environment

To manages the portlets, Gridsphere uses Tomcat Manager Web Application.

So, you must insert gridsphere user with manager role to Tomcat User. Edit

$CATALINA_HOME/conf/tomcat-user.xml.

<user name=”gridsphere” password=”gridsphere” role=”manager” />

To prevent the portal users access Tomcat Manager Web Application, edit

$CATALINA_HOME/webapp/manager.xml like following.

<Context path=”/manager” debug=”0” privileged=”ture”

docBase=”$CATALINA_HOME/server/webapps/manager”>

<valve className=”org.apache.catalina.valves.RemoteAddrValve”

allow=”127.0.0.1”/>

</Context>

2.3.4. Starting Gridsphere

 149

You just restart Tomcat container and connect to

http://localhost:8080/gridsphere/gridshere. You can see following web page.

2.4. Installing Gridportlets

We just use certification portlets and applet(including web start), so to use full

function of Gridportlets you modify xml files in

$GRIDPORTLETS_HOME/webapp/WEB-INF/.

2.4.1. Downloading and extraction

Like Gridsphere, you can download from http://www.gridcenter.or.kr/kmi and

 150

Gridsphere CVS repository. We recommend to download from

http://www.gridcenter.or.kr/kmi. Gridsphere is being developed and modified

continually, to use the portlets in KMI packages you must download KMI

version.

After download the package, you extract file to

$GRIDSPHERE_HOME/projects. From now on, $GRIDPORTLETS_HOME is

$GRIDSPHERE_HOME/projects/gridportlets.

2.4.2. Configuration of Gridportlets

Before you install Gridportlets, you must install Gridsphere and modify

$GRIDPORTLETS_HOME/build.properties file and

$GRIDPORTLETS_HOME/webapp/WEB-INF/Resources.xml.

1. Modify build.properties

1.1. Set OGAS Library version

#ogsa.version=ogsa-3.0.2

 ogsa.version=ogsa-3.2.1

1.2. Set keystore properties. “Keystore” is a path of keyStore file generated

by keytool. “storealias” is the value of “–alias” option.

CN=K*GRID

OU=

O=KISTI

C=KR

keystore=/usr/local/tomcat/portalcert/testKeyStore

storetype=JKS

storepass=gridsphere

signalias=gridsphere

This version supports just keytool but next version supports keytool and

openssl. Above keystore directory must be made before installation.

 151

 Generation of keyStore using keytool※

$ keytool –genkey –keystore testKeyStore –alias gridsphere

$ keytool –selfcert –alias gridspher –keystore testKeyStore

$ keytool –list –keystore testKeyStore

1.3. Set hostname and MyProxy Server

CA email address.

install.ca.email.address=

default MyProxy server to use.

install.myproxy=nstargate.gridcenter.or.kr

host name

install.hostname=sk-joon.supercomputing.re.kr

host port

install.port=8080

2. Modify Resources.xml

You must set Myproxy server information in

$GRIDPORTLETS_HOME/webapp/WEB-INF/Resources.xml.

<grid-resources>

 <hardware-resource label="K*Grid Myproxy machine"

 description="Myproxy resource"

 hostname="nstargate.gridcenter.or.kr">

 <myproxy-resource label="KISTI Myproxy Service"

 description="The KISTI Myproxy service"

 authorizedProxyFile=""

 authorizedCertFile=""

 authorizedKeyFile=""/>

 </hardware-resource>

</grid-resources>

 152

2.4.3. Installation
Using ant, you just run command “ant install” and the package is installed in

$CATALINA_HOME/webapp/gridportlets.

 $ ant install

2.4.4. Starting GridPortlets

You just restart Tomcat container and log in

http://localhost:8080/gridsphere/gridshere. In “Welcome->Settings->Configure

group memebership”, you check gridportlets and click “Save” button.

 153

Chapter 4

AIServie
(Acccount Information Service)

 154

1. Introduction

The object of this document describes how to install and configure AIService,

an accounting service which is efficient, flexible and OGSI-compliant service.

Here, we illustrate the schematics of this accounting service and its main

functionalities.

For purposes of this document, it is assumed that

-You are familiar with Unix or Linux.

-You have some understanding of the concepts underlying computational

grids.

-You have some understanding of the concepts of traditional Unix (or Linux)

accounting.

-You have basic knowledge of XML.

1.1. What is AIService?

This project is intended to develop an OGSI-compliant service which gather

accounting information from heterogeneous platforms and provide accounting

information as a standard form. We named it as ‘AIService’ (Accounting

Information Service).

There are two topics:

Gathering grid accounting information

Service of grid accounting information

 155

Figure 4-1 A schematic view of AIService

Accounting in the grid environment is very different from that in the traditional

computing environment, because the concept of the user is different from the

traditional local user and the format of accounting data of each system is

different from each other. Accounting information in the grid environment is

not produced by the local user but by the grid user. And the format of

accounting data is different from platform to platform. By the use of

AIService, these problems can be resolved.

Development of this project focuses on the GT3. To provide accounting

information to grid users, AIService is developed to be OGSI-compliant.

Anyone who uses GT3 client can retrieve his accounting information via

AIService.

1.2. Architecture of AIService

Figure 4-1 shows a schematic view of AIService. This system is divided into

two major parts: AIT and AIS. AIT (Accounting Information Tracker) gathers

local accounting information at each site, converts into grid accounting

information format, and accumulate in database. AIS (Accounting Information

 156

Service) serves as OGSI-compliant interface against user’s GT3 request.

Figure 4-2 shows more detail view of AIService.

Figure 4-2 AIService Architecture

 AIT-server

- Accumulates grid accounting information into database for AIS

 We use MySQL as DBMS.

 For the future expansion, we will use Xindice

 MySQL

 AIT-client-*

- ait-client-put for OpenPBS

 We use PBS XML Accounting Toolkit

(http://pbsaccounting.sourceforge.net) to extract accounting

information produced by PBS.

 157

- ait-client-lut for LoadLeveler

 We use C API to get accounting information from LoadLeveler’s

history.

- Convert local accounting information at each site into grid-aware

accounting information.

 Local accounting information does not include the real owner of

each record. The owner of this record is not local account but

grid user.

 The owner of accounting information can be tracked by using

the information in ‘grid-mapfile’ or ‘globus-gatekeeper.log’ or

other resource broker’s. Each method has their own

advantage and disadvantage.

 By default, we use the information in ‘grid-mapfile’. To guarantee

end-to-end user identity, we limit the mapping of user’s subject

and local account to 1-to-1 mapping (not n-to-1).

- Transform grid-aware accounting information to standard XML format

suggested by UR-WG in GGF.

 At each site, a client module against AIT is located. They are

tries to find local accounting information from the local job

manager and provides information as the standard XML format.

If we need to include new platform, we just develop this client

module for new platform.

 AIService

- Developed as an OGSI-compliant service.

- Select records that fill user’s condition and provide.

 AIS-portlets

- A grid portlet working on gridsphere framework.

- Show some chart image extracted from accounting information data

and summarized information

 158

2. Installation and Configuration

2.1. Requirements

To manage extracted grid accounting information, you need to have DBMS.

For AIService, the following environment is required:

OS : Linux (Redhat 7.3 or more are recommended)

Globus Toolkit 3.0 or later : required to provide OGSI-compliant service

MySQL Database : stores grid accounting information

J2SDK 1.4.0 or later : AIService is written in pure java language on GT3

JDBC Mysql driver : required to access MySQL Database from the java code

2.2. Installing required software

2.2.1. Installing Globus

AIService works on Globus Toolkit 3.0 or later. So, you need to download it

and install in usual scheme.

For the more detailed information, see

http://www-unix.globus.org/toolkit/docs/3.0/index.html.

2.2.2. Installing MySQL Database

Download a latest MySQL distribution from http://www.mysql.com/.

You can find a copy of MySQL distribution in software archive directory of

KISTI Grid Testbed

web site : http://testbed.gridcenter.or.kr/software/index.php?dir=./DBMS

 159

Move to a temporary directory and extract the compressed file.

cd /usr/local/src

tar zxvf mysql-4.0.16.tar.gz

cd mysql-4.0.16

Refer to the --help output for configure options

./configure –help

Configure and compile the source

./configure --prefix=/usr/local/mysql --with-mysqld-user=root

make

Copy the compiled binaries to the install location.

make install

Make a symbolic link for ‘mysql’ command line client, or add it to the $PATH

variable.

ln -s /usr/local/mysql/bin/mysql /usr/local/bin/mysql

Database initialization

/usr/local/mysql/bin/mysql_install_db

Start MySQL server daemon

/usr/local/mysql/bin/mysqld_safe -u root &

To start MySQL server daemon during system startup, add a line to the

rc.local file.

vi /etc/rc.d/rc.local

...

mysql

/usr/local/mysql/bin/safe_mysqld -u root &

...

Refer to other books or documents about managing and using MySQL.

2.2.3. Installing J2SDK, Ant, JDBC driver

Install J2SDK 1.4.2 under /usr/java/.

 160

Get it from http://java.sun.com/

mkdir /usr/java

cd /usr/java/

chmod 755 j2sdk-1_4_2-linux-i586.bin

./j2sdk-1_4_2-linux-i586.bin

...

Do you agree to the above license terms? [yes or no]

yes

Add a configuration to the .bashrc

vi ~/.bashrc

...

java

export JAVA_HOME=/usr/java/j2sdk1.4.2

export PATH=$JAVA_HOME/bin:$PATH

...

:wq

Install Jakarta Ant tool

Download ant from http://ant.apache.org/.

tar zxvf apache-ant-1.5.3-1-bin.tar.gz

mv apache-ant-1.5.3-1 /usr/local/

cd /usr/local

ln -s apache-ant-1.5.3-1 ant

Add a configuration to the .bashrc

vi ~/.bashrc

...

ant

export ANT_HOME=/usr/local/ant

export PATH=/usr/local/ant/bin:$PATH

 161

...

:wq

Install JDBC driver MySQL-connector/J

Download it from http://www.mysql.com/.

tar zxvf mysql-connector-java-3.0.8-stable.tar.gz

cp mysql-connector-java-3.0.8-stable/mysql-connector-

java-3.0.8-stable-bin.jar $JAVA_HOME/jre/lib/ext/

2.3. Installing AIService

2.3.1. Downloading and extracting

For AIS and AIT, download aiservice-1.0.0.tgz from ftp://tea07.chonbuk.ac.kr.

In this document, we use /usr/local/aiservice-1.0.0 as the installation directory.

Move to /usr/local/ and extract the distribution file.

cd /usr/local/

tar zxvf aiservice-1.0.0.tgz

The directory structure is :

aiservice-1.0.0

|-- ais-server source & binary files for AIS

|-- ais-portlet source & binary files for AIS portlet

|-- ait-client source & binary files for AIT clients

|-- ait-server source & binary files for AIT server

\-- DB_Tool tools for management of DBMS

For ait-client-put, download ait-client-put-1.0.0.tgz from

http://kmi.moredream.org.

Move to your directory and extract the distribution file.

 162

cd ~/ait-client-put

tar zxvf ait-client-put-1.0.0.tgz

The directory structure is :

ait-client-put-1.0.0

|-- bin runnable script files

|-- etc configuration files

|-- lib binary java archives

|-- var log files & temporary files

| \-- spool

\-- other source & scripts

2.3.2. Compiling and Installing AIS & AIT

For AIT clients, source and binary files are provided. If you want to use source

version, move to AIT client directory and execute a simple script named

‘build.sh’. To install compiled binaries, set environment variable

$AIT_CLIENT_PUT and run a script named ‘install.sh’.

cd ./ait-client-put-1.0.0

./build.sh

export AIT_CLIENT_PUT=/usr/local/ait-client-put

./install.sh

For AIT server, move to AIT client directory and execute a simple script

named ‘build.sh’. To install compiled binaries, set environment variable

$AIT_SERVER and run a script named ‘install.sh’.

cd ./ait-server-1.0.0

./build.sh

export AIT_SERVER=/usr/local/ait-server

./install.sh

 163

For AIS, you can use source and binary version.

If you want to use source version, move to AIS directory and execute a script

named ‘build.sh’.

cd ./ais-server

./build.sh

For AIS-portlet, move to AIS-portlet directory and execute ant.

cd ./ais-portlet

ant compile

ant deploy

2.3.3. Creating database and tables

Move to ‘DB_Tool’, there are three files.

DB_Tool

|-- README : information and usage

|-- create-add-host-sql : a script to create usage record table

\-- init_db.sql : SQL statements to initialize db

To initialize database, use ‘init_db.sql’.

mysql –u root –p < ./init_db.sql

Then, database and its management table will be created.

To add new site in this database, use script ‘create-add-host-sql’.

ls

README

create-add-host-sql

init_db.sql

./create-add-host-sql joker.chonbuk.ac.kr

ls

 164

README

add_joker_chonbuk_ac_kr.sql

create-add-host-sql

init_db.sql

Created file is an SQL statement to create usage record table for this site.

To add table, use this SQL statement

mysql –u root –p < ./add_joker_chonbuk_ac_kr.sql

2.3.4. Configuration

For AIT & AIS, there is no need to configure.

For AIT client, edit files in ‘etc’ directory.

ait-client-put-1.0.0/etc

|-- PbsUsageTracker.conf : main configuration file

|-- ur-config.xsl : your host name

\-- ur.xsl : xsl for transformation from pbs to grid

In ‘PbsUsageTracker.conf’, there are following fields.

cat $AIT_CLIENT_PUT/etc/PbsUsageTracker.conf

Interval=60 # a time period to check log

PbsAcctLogDir=/usr/spool/PBS/server_priv/accounting

real path of pbs accounting log directory

PUTInfoFile=./var/PbsUsageTracking.info

intermediate information of suspended log

URXslFile=./etc/ur.xsl # xsl for transformation from

pbs to grid

OutHost=tea07.chonbuk.ac.kr

database server

OutHostPort=2410 # database server port

GridMapfile=/etc/grid-security/grid-mapfile

 165

real path of grid-mapfile

In ‘ur-config.xsl’, the host name which is registered in the database server.

(Each host is registered by using ‘create-add-host-sql’. See 2.3.3) So, you

must put your host name which is or will be registered in the database server.

For AIT client, edit files in ‘etc’ directory.

ait-client-put-1.0.0/etc

\-- ait-server.conf : main configuration file

In ‘ait-server.conf’, there are following fields.

cat $AIT_SERVER/etc/ait-server.conf

Port=2410 # database server port

DatabaseURL=jdbc:mysql://210.117.187.244:3306/AcctInfo

A databse url of form « jdbc :subprotocol :subname »

User=tr_venus # database user name

Passwd=tr_venus # password of database user ‘tr_venus’

For AIS, edit a configuration file ‘AIS.conf’ in $GLOBUS_LOCATION/etc

directory.

In ‘AIS.conf’, there are following fields.

cat $GLOBUS_LOCATION/etc/AIS.conf

DatabaseURL=jdbc:mysql://210.117.187.244:3306/AcctInfo

A databse url of form « jdbc :subprotocol :subname »

User=tr_venus # database user name

Passwd=tr_venus # password of database user ‘tr_venus’

For AIS-portlet, edit a configuration file ‘ais-config’ in ‘webapp/WEB-INF’ of

this portlet. Fill AIS-server and resource-list element.

cat webapp/WEB-INF/ais-config

<ais-config>

 <ais-server>210.117.187.244</ais-server>

 166

 <resource-list>

 <resource>vega01.gridcenter.or.kr</resource>

 <resource>eros01.gridcenter.or.kr</resource>

 <resource>venus.gridcenter.or.kr</resource>

 </resource-list>

</ais-config>

2.3.5. Starting

For AIT client, just run a script named ‘run-ait-client-put’ in

‘$AIT_CLIENT_PUT/bin directory.

cd $AIT_CLIENT_PUT

./bin/run-ait-client-put

For AIT server, just run a script named ‘run-ait-client-put’ in

‘$AIT_CLIENT_PUT/bin directory.

cd $AIT_SERVER

./bin/run-ait-server

For AIS, deploy the service into a grid services container.

cd ./AIS

ant deploy \

–Dgar.name=./build/lib/org_globus_kgrid_services_AIS.gar

Run grid services container.

cd $GLOBUS_LOCATION

globus-start-container

AIS-portlet is a portlet working on Gridsphere which is working as a servlet on

tomcat. So, to run AIS-portlet, restart tomcat.

$CATALINA_HOME/bin/shutdown.sh

 167

$CATALINA_HOME/bin/startup.sh

2.4. Management of Database

To add new host,

1. Add hostname and its table name into ‘job_ur_tables’ table

2. Create table of new host

Above operations are performed by using ‘create-add-host-sql’ script.

If you want to add the host ‘joker.chonbuk.ac.kr’,

ls -F

README

create-add-host-sql*

init_db.sql

./create-add-host-sql joker.chonbuk.ac.kr

ls -F

README

add_joker_chonbuk_ac_kr.sql

create-add-host-sql

init_db.sql

The created file includes SQL statements to add item into ‘job_ur_tables’ table

and create table of new host. To perform these operations, use this SQL

statement

mysql –u root –p < ./add_joker_chonbuk_ac_kr.sql

If you want to change the table name of new host, modify the created file and

run SQL statement. (But, don’t change field name or properties.)

Following figure shows tables in the database and contents in ‘job_ur_tables’

table.

 168

Figure 4-3 Accounting Information Database

 169

3. Using AIService

AIService is implemented to be a OGSI-compliant service. So, users must

request using GT3-based service call. Therefore, client’s system must have

installed GT3 and related development tools (for example, Java SDK,

GridSphere).

Figure 4-4 shows an example of service call to AIService.

import org.globus.kgrid.services.AIS.impl.*;

import

org.globus.kgrid.stubs.AIService.service.AIServiceGridL

ocator;

import org.globus.kgrid.stubs.AIService.AIPortType;

import org.globus.ogsa.impl.security.Constants;

import

org.globus.ogsa.impl.security.authorization.NoAuthoriza

tion;

import javax.xml.rpc.Stub;

import java.net.URL;

...

try {

// Get command-line arguments

URL GSH = new java.net.URL(args[0]);

int a = Integer.parseInt(args[1]);

// Get a reference to the AIService instance

 170

AIServiceGridLocator aiServiceLocator= new

AIServiceGridLocator();

AIPortType ai =

aiServiceLocator.getAIServicePort(GSH);

QueryField qf = new QueryField();

Try {

qf.set(QueryField.UID_GLOBALUSERDN,

"/C=KR/O=KISTI/OU=Grid/CN=Globus");

qf.set(QueryField.RID_CREATETIME_FROM,

"2004-08-22 00:00:00");

qf.set(QueryField.RID_CREATETIME_TO,

"2004-08-24 05:00:00");

qf.set(QueryField.UR_MACHINENAME,

"eros01.gridcenter.or.kr");

} catch(Exception qfe) {

}

ai.search(qf.makeString());

String strResult = ai.getResult();

} catch(Exception e) {

}

...

Figure 4-4 An example code to call AIService

In this example, class QueryField is used. QueryField used to build SQL

statement in AIService to query database server. QueryField has following

fields :

public class QueryField {

public static int UID_GLOBALUSERDN = 0x00;

 171

public static int RID_CREATETIME_FROM = 0x01;

public static int RID_CREATETIME_TO = 0x02;

public static int JOBSTATUS = 0x03;

public static int TI_QUEUE_FROM = 0x04;

public static int TI_QUEUE_TO = 0x05;

public static int UR_MACHINENAME = 0x06;

...

Figure 4-5 QueryField

If the query was success, the result may have following structure (Figure 4-6).

The Usage Record Fields suggested by UR-WG in GGF is used. So, this

result can be used to exchange information between other OGSI-compliant

services, without conversion.

 172

Figure 4-6 An example of the result of AIService

 173

Figure 4-7. An example view of AIS-portlet

 174

Figure 4-8. An example view of AIS-portlet with some charts

 175

Reference
[1] http://www-unix.globus.org/toolkit/docs/3.2/installation/index.html

[2] http://java.sun.com/j2se/1.4.2/index.jsp

[3] http://ant.apache.org/manual/index.html

[4] http://testbed.gridcenter.or.kr/software/OpenPBS/doc/v2.3_admin.pdf

[5] http://www.gridsphere.org/gridsphere/docs/index.html

[6] MySQL (http://www.mysql.com/)

[7] PHP (http://www.php.net/)

[8] http://www.moredream.org/gais.htm

[9] http://www.npaci.edu/DICE/SRB/

[10] http://testbed.gridcenter.or.kr/software/OpenPBS/doc/v2.3_admin.pdf

[11] Kyung-Lang Park et al. “Design and Implementation of a Dynamic

Communication MPI Library for the GRID,” International Journal of Computers

and Applications, Vol. 26, No. 3, 2004, pp. 165-172

[12] Kum-Rye Park et al., “MPICH-GP: A Private-IP-enabled MPI over Grid

Environments,” In Proceeding of the 2nd International Symposium on Parallel

and Distributed Processing and Applications (ISPA 2004).

[13] Si-Youl Choi et al., “An NAT-Based Communication Relay Scheme for

Private-IP-enabled MPI over Grid Environments,” In Proceeding of the

International Conference on Computational Science 2004 (ICCS 2004). June

2004. pp. 499-502.

[14] User’s Guide of GRASP, online at http://www.moredream.org

[15]KISTI Grid Certificate Authority (http://ca.gridcenter.or.kr/)

[16]Handbook of Applied Cryptography (http://www.cacr.math.uwaterloo.ca/hac/)

[17] http://jakarta.apache.org/tomcat

[18] http://dev.mysql.com/doc/mysql/en/index.html

[19] http://ant.apache.org/manual/index.html

[20] http://testbed.gridcenter.or.kr/software/Apache/httpd/doc/httpd-docs-

2.0.49.ko.zip

 176

