제1장
서 론

나노기술은 개발 초기에 있는 기술이다. 이 기술의 잠재력은 실로 대단해서 현재, 정보통신, 환경, 에너지, 기계, 생명과학 등의 넓은 분야에 이용되고 있을 뿐만 아니라 화장품 제조에도 이용되고 있다. 나노기술이 다루는 머리카락 콧기의 10분의 1에 해당하는 나노임자는 생명체에서 보낸 DNA 정도의 작은 크기라는 특성을 가지고 있다. 이러한 성질이 장점으로 부각되어 생명공학에서 가전제품과 각종 생활용품에 이르기까지 때로 적응 분야가 넓어지고 있는 실정이다. 이 가운데 나노기술의 적용이 가장 활발히 이루어지는 분야가 화장품 분야이다.

화장품 분야에서는 나노기술을 응용한 초미립자를 포함한 제품이 1990년대 이후부터 등장하기 시작했다. 2000년 화장품법이 시행되면서 기능성 화장품에 대한 관심이 높아지고, 보다 기능성이 뛰어난 제품을 내놓아야 하는 화장품 제조업자들에게 나노기술은 중요성 역할을 하고 있다. 나노기술이 기능성 화장품 분야에 응용되는 경제는 무엇보다 특정 성분을 피부 속에 전달하는 역할을 하는 나노구조체의 크기가 피부를 구성하는 세포보다 작기 때문이다. 이러한 나노입자의 특성 때문에 나노입자가 포함된 기능성 화장품은 바르면 약효 성분이 피부 깊숙이 잘 스며든다. 그 밖에 나노입자는 입자의 크기 때문에 투명성이 높고 자외선을 방어하는 역할을 하기도 한다.

현재 시장에 판매되는 다양한 기능성 화장품은 예전의 화장품에 비해 그 효과가 뛰어난데 그 이유는 이미 미백 화장품과 자외선 차단 크림, 주름제거 화장품 등과 같은 기능성 화장품에 나노입자가 들어 있을 뿐만 아니라 나노입자가 그들의 특성을 발휘할 수 있는 분위기가 조성되어 있기 때문이다. 이제 현대인들은 행복하게도 최소의 노력을 끼예나 그러한 아름다운 피부를 가질 수 있게 된 것이다.

이와 같이 탁월한 미용효과를 보이는 나노입자를 다루는 나노기술에 대한 접근 방식은 다음과 같이 구분한다.
- 미세가공기술을 중심으로 하는 물리학적 접근
- 분자나 원자의 자기조직화를 중심으로 하는 화학적 접근
- 생물시스템을 나노구조화와 결합시킨 생물학적 접근

화장품 소재에 중요하게 사용되는 비타민 A, C, E 및 기타 고기능성 물질들은 항산화, 항균 및 주름 방지에 효과가 있으나, 대부분 산소와 접촉하면 산화되기 때문에 산소차단 물질로 보호되어야 한다. 이러한 목적을 위해 이들 물질을 산소 차단 성이 좋은 생물고분자로 코팅하여 나노 크기의 생물학적 용기에 집어넣으면 체내 이용률을 극대화 할 수 있음을 뿐만 아니라 고유 기능을 오랜 동안 유지할 수 있다. 또한, 상품 유통기한의 연장은 상품의 가치를 높이는 결과로 이어지기 때문에 그 제품은 일반 상품에 비해 500~1000배 정도 고가로 판매된다. 이와 같은 방법으로 화장품의 부가가치를 높이기 위해 미국, 일본 및 유럽 등의 여러 선진국에서는 산소에 안전한 나노 크기의 고기능성 물질 생산에 막대한 연구비를 투자하고 있다.

이러한 나노 크기의 물질을 적용한 나노 화장품은 미를 추구하는 현대인들에게 삶의 질을 향상시키고, 또한 국가적으로는 고부가가치 산업으로 경제적 효과를 가져다 줄 것으로 판단된다. 이 보고서에서는 나노 화장품의 새로운 발전을 위하여 지금까지 이루어진 국내외 기술을 살펴보고, 관련기술을 바탕으로 미국, 일본, 유럽 및 한국특허청에 출원된 특허들을 조사, 분석하여 현재까지의 연구동향 및 지식재산권 확보에 대하여 기술하였다. 또한 나노 화장품의 위생성과 시장의 범위와 특성, 시장 규모 및 주요업체에 대해서 분석하였다.
제2장

나노 화장품 기술

1. 기술의 개요

가. 나노 화장품의 정의

국내의 화장품법 제2조 1항에서 "화장품"이라 함은 인체에 청결·미화하여 매력 을 더하고 욕모를 밝게 변화시키거나 피부·모발의 건강을 유지 또는 증진시키기 위하여 인체에 사용되는 물품으로서 인체에 대한 작용이 경미한 것을 말한다(약사 법 제2조 4항의 의약품에 해당하는 물품은 제외)라고 정의되어 있다.

기능성 화장품에 대해서는 국내 화장품법 제2조 2항에 피부의 미백에 도움을 주 는 제품, 피부의 주름개선에 도움을 주는 제품, 피부를 빠르게 태우거나 자외선으로부터 피부를 보호하는데 도움을 주는 제품으로 정의되어 있다.

나노기술이 적용되고 있는 기능성 화장품은 미백, 주름 개선, 자외선 차단 등이 모두 피부를 관리하는 화장품들이다. 이어서 우선 피부의 기본구조에 대하여 살펴보기로 한다.

피부의 표면적은 개인차가 있기는 하지만 성인기준으로 약 1.6m²에 달하는데 이 것은 인체를 구성하고 있는 여러 가지 장기중에 오른다. 피부가 가지는 생리학적 의미로는 외부의 기계적인 빅에 의한 보호작용, 알칼리 중화작용 수분의 과도한 흡 수 또는 유입의 방지작용, 살균작용, 면역작용을 담당하는 생체방어기능, 자외선 방 어작용, 세온조절작용, 저작용, 흡수작용 등을 한다. 피부의 구조는 표면에 서부터 각질층(Honey layer/Stratum corneum: 0.01~0.015 mm, 표피층(Epidermis: 0.1~1.5 mm), 전피층(Dermis: 2~3 mm), 피하조직(Subcutaneous tissue) 등 크게 4 가지로 나누어진다.

나노 화장품이란 국내법에 정의되고 있지 않지만 100 nm 이하의 크기를 갖는 입 자성 물질을 함유하고 있는 화장품을 말한다. 즉, 나노 구조체가 피부의 세포보다 작아서 표피세포의 보호막을 쉽게 침투하는 특성을 이용하여 10~100nm 크기의 나노입자에 생리활성물질을 담아 피부조직 내부로 침투시키는 기능성 화장품을 말한 다.
나노 화장품으로 정의 되는 화장품의 주요기능은 다음과 같다.
첫째, 생리 활성화물질과도 쉽게 결합하거나 세포막의 지질이 발휘하는 능력을 모방해 효과적인 피부미백 또는 주름을 제거하는 기능
둘째, 나노 구조체 또는 다孔성 나노물질 내부에 금속 나노입자를 삽입하여 자외선 차단효과를 극대화하는 자외선 차단기능
셋째, 특정물질을 원하는 위치에 효과적으로 전달하는 전달체로서의 기능
넷째, 기타 피부보습 효과를 강화시키는 기능 등이 있다.

![그림 2-1] 나노 화장품의 피부전달 과정

화장품에 나노기술의 효과적인 적용 가능성을 알아본 것은 무엇보다 특정 성분을 피부 속에 전달하는 역할을 하는 나노 구조체가 피부의 세포보다 작다는 사실 때문 이다. 기존 화장품의 경우 사용하는 입자의 크기가 큰 관계로 사용되는 물질들의 흡수력이 떨어진다는 단점을 가지고 있었으나, 나노입자는 구조체의 형태를 화장 품에 응용함으로써 불안정한 저분자형 약물 또는 단백질의 안정성을 증가시키고, 방울 조절성과 높은 저장 안정성을 가질 수 있게 된 것이다.

나노 구조체 입자는 나노 캡슐과 나노 미립구로 나눌 수 있는데 나노 캡슐은 약 물이 독특한 고분자에 의해 물리적인 공간에 도매인을 형성하여 캡슐화되어 있는 형태인 반면, 나노 미립구는 약물이 물리적으로 균일하게 분산되어 있는 담체 시스템을 말한다. 고기능성 화장품의 필요성이 대두되면서 고전적인 유화, 계면화학적 접근에서 탈피하여 신개념, 신기술의 활용과 필요성에 화장품 소재 개발에 가장 먼저 검토되는 것이 나노기술이 된 것이다.

최근 주름 개선, 피부를 회복할 수 있는 미백화장품에 나노기술이 많이 응용되고 있다. 나노미터 사이즈의 입자로 된 기능성 화장품은 바르면 약효 성분이 피부 깊숙이 잘 스며든다. 예를 들어 이론하 나노 화장품 중에는 마치 축구공처럼 이
중충 구조로 되어 있는 리포슘(Liposome)이라는 약물전달 캡슐이 있다. 이 캡슐의 가운데 빈 공간에 한방 추출물이나 비타민 등을 넣고 인지질 캡질로 감싸면 안정적인 리포슘이 만들어진다. 나노미터 수준 크기의 리포슘은 피부 각질층을 통과해 피부 속에서 풍성히지만 자연스럽게 약물을 전달하고, 인지질은 몸의 세포막 구성 성분과 비슷해 자연스럽게 피부에 흡수된다. 이런 캡슐을 첨가한 화장품은 마이크로로 입자를 포함한 촉촉한 액상 형태를 띠며 부드러운 감촉을 주고, 사용 중 피부에 광화학 작용의 부산물 짜개기로 남기지 않한다.

캡슐의 크기가 100~600 nm 정도 되는 것을 나노 캡슐이라고 한다. 생체세포 내에서 분자의 이동으로 구성된 리포슘이나 리포슘과 비슷한 성질을 가진 고분자로 만들어지는 나노 캡슐은 내부의 물질을 보호하며, 수분과 환경, 특정 조건 등을 고려한 원칙 없는 분산 장소를 통과하여 운반도중 물질의 방출을 최소화하고 정확히 원하는 장소로 표적물질을 운반할 수 있다. 따라서 나노 캡슐 기술을 적용하여 제조된 화장품은 피부 깊숙이 스며들어 기저의 생체 분자층에 영향을 준다. 비타민 성분도 이와 같은 원리에 의하여 캡슐을 타고 피부 아래 깊숙이 침투하여 외막이 용해되고, 흡수된다.

이러한 나노 캡슐 기술은 화장품 외에도 인체 내에 흡수된 과정 화학물질을 제거하는데 이용될 수 있으므로 약물 과다투어 치료제로 사용되기도 하며, 표적약물 전달물질의 연구 등 의약품 개발에도 널리 응용되고 있다.

나노 화장품에 응용된 나노기술은 여러 성분이 혼합된 화장품의 물성과 수용성 을 항상시킴으로써 보습 및 노화방지 조성물, 메이크업 및 해외 건디서니처럼 피부 와 머리카락에 적합적인 효과를 주거나 자외선 차단제의 UV 필터처럼 피부를 보호하는 역할의 중심이 되면서 2000년대에 주류를 이루고 있는 기능성 화장품의 개발 및 발전에 교두보가 되고 있다.

다. 나노 화장품의 특징

 최근에 기초 화장품으로서 나노입자를 응용한 기능성 화장품이 많이 등장하고 있다. 바야흐로 나노기술이 첨가된 화장품, "나노 화장품" 시대가 열린 것이다. 태평양, LG생활건강, SK 캐미칼, 코리아나 화장품, 로제철망물호 화장품을 비롯한 대기업 및 중견기업에서부터 아라인지스 화장품, 한국블마, 비타코스 등 중소 벤처기업에 이르기까지 나노 화장품 붐을 타고 그들의 영역을 개척함과 동시에 속속 신제품 시사회를 열거나 시장에 선보이고 있다. 물론 프랑스의 로레알(L’OREAL) 사, 크리스찬디오르 사 등 외국 화장품 업체들도 일찍이부터 나노 화장품 경영에 뛰어든 상태이다. 이
들 업체들이 관심을 가지고 있는 화장품 중에서 기초화장품으로 그 기능을 인정받고 있어 기능성 화장품 분야에서 두각을 나타내고 있는 나노 화장품의 특징에 대해 알아본다.

나노미터 크기의 나노 구조체는 화장품 성분 중 주름을 개선하거나 노화방지 기능을 하는 세포 활성물질과 쉽게 결합하는 특징이 있다. 나노 화장품은 나노 크기의 물질로 구성되어 있는 즉, 나노 구조체의 특성을 화장품에 응용한 것으로 크기가 피부세포의 간격보다 환전 적기 때문에 피부에 쉽게 흡수된다.

피부가 노화되면 주름이 생기는데 그 주름을 개선하기 위한 방법으로 단순히 피부 밖에서 인위적으로 평평하게 점아 당겨 주름을 제거하는 방법을 생각할 수 있지만, 이는 여러 가지 부작용이 따를 수 있다. 따라서 피부 속 세포의 활동을 활발하게 하는 물질을 점어넣어 상화된 피부조직을 마치 젖은 사람들의 피부처럼 만드는 방법이 있다면 그 방법이야말로 가장 좋은 방법이라고 할 수 있다. 이로운 목적을 위해 개발된 화장품이 바로 나노 구조체 화장품인데, 화장품속에 주요 성분으로 들어있는 나노 구조체는 피부세포의 활동을 촉진하는 세포활성 물질들을 피부 속으로 더욱 효과적으로 전달하는 전달체 역할을 한다. 이렇게 나노 구조체를 타고 피부 속으로 첨부된 생리활성물질은 온 몸속에 쉽게 퍼져 효과적으로 세포에 활성을 주게 된다.

이러한 나노 구조체를 만들어 첨가하는 나노 화장품 기술은 2000년 이후 급속히 발전하기 시작하여 주름개선용 화장품, 자외선을 차단하는 크림, 피부를 회복 만드는 미백 화장품 등에 널리 활용되기 시작하였다. 특히 나노 구조체는 화학적으로 안정되고 있는 피부 세포증을 선택적으로 통과할 수 있어 화장품에 적용될 수 있는 품질이 높다는 특징을 가지고 있다.

최근의 나노 기술을 이용한 화장품은 기존의 제품들과는 다른 특성을 보여주고 있다. 일반적으로 피부주름 개선 혹은 미백 기능을 갖는 기존의 화장품들은 화장품 속에서 그 기능을 발휘하는 세포활성물질의 용해가 쉽지 않고 피부 흡수도가 매우 낮은 단점이 있다. 반면 제품의 안정도가 저하되어 유용성분과 기타 성분이 분리되는 등 제품의 형태에서도 많은 문제점을 안고 있다. 나노기술의 발달은 그런 단점을 쉽게 개선할 수 있는 길을 열어 주었고 최근에는 그런 문제를 극적적으로 해결한 나노 화장품들이 시장에 선보이고 있다.

이렇게 피부의 특정 부위에 특정 물질을 전달할 수 있는 유용한 지능형을 가진 화장품을 만들 수 있을까? 마치 의약품의 예에서 보듯이 치료가 필요한 부위에만 그 약효가 전달되는 매직 볼렛(magic bullet, 마법의 총알)의 역할을 할 수 있는 화장품이 ‘나노’라는 키워드를 담고 탄생할 수 있을까? 이점이야말로 나노 화장품의
핵심이라 할 수 있다. 그러나 이러한 문제의 해결은 입자의 크기만을 작게 해서 되는 것은 아니다. 왜냐하면 그러한 특별한 효과를 얻기 위해서 생리활성물질의 개발, 지속적인 효과를 얻기 위해 용해의 제어 등과 같은 여러 가지 기타 문제들을 동시에 해결해야만 가능한 일이기 때문이다. 그 중에는 화장품의 본연의 성질을 잃지 않아야 한다는 중요한 문제도 포함되어 있음은 물론이다.

나노라는 용어에서 알 수 있듯이 작은 미세한 입자에 생리적 활성을 띄는 물질을 담아 피부조직으로 보내는 것이 쉬운 기술은 아니다. 즉, 피부조직세포보다 작은 입자에 생리적 활성을 띄는 물질을 담아 특정의 부위에 전달하기까지의 과정은 주변 환경과 외부의 여러 가지 요소도 감안하지 않으면 안 되기 때문이다. 앞으로 이 기술이 더욱 발전해 가면 그 물질이 스스로 그 주위요소를 파악해 지능적으로 작용하는 단계까지 이르게 될 것이다.

다. 나노 화장품의 종류

2000년 7월 화장품법의 시행으로 국내 화장품 산업은 의약품 수준의 효능을 가지면서 화장품의 피부 안전성을 확보하는 새로운 시스템 개발에 주력하지 않을 수 없게 되었다. 특히 노화방지, 항산화 및 미백용 기능성 화장품은 2000년에 1,000억원 대의 시장을 형성하고 이후 2000억원을 돌파하는 거대 시장으로 성장하였다. 화장품법에서 정하는 기능성 화장품의 정의는 피부의 미백, 도움을 주는 제품, 피부의 주름 개선에 도움을 주는 제품 및 피부를 공계 태워주거나 자외선으로부터 피부를 보호하는데 도움을 주는 제품을 의미한다. 국내에서 기능성 화장품이라 읽어는 대개 생리활성이 강조된 화장품이라는 의미로 통용되고 있으며, 이는 의약품과 화장품의 중간적인 제품으로 코스메슈티컬(cosmeceutical) 또는 약용화장품으로 불리우기도 한다. 이러한 기능성 화장품의 분류를 그림으로 나타내면 <표 2-2>와 같다.
기능성 화장품의 개발은 고려할 사회로의 진입에 따른 시대적 요구와 젊고 주름이 없는 피부를 소망하는 여성들의 육구 증대가 맞물려 화장품 업계가 전략적 차원에서 취급하는 분야다. 이러한 수요를 충족시키기 위해 다양한 활성물질의 개발 및 기존의 의약품 개발에 이궁되어 오던 생명공학기술 그리고 새로운 각광받고 있는 나노기술을 화장품과 접목시킨 제품개발이 활발히 이루어지고 있다.

최근의 화장품은 대부분 나노기술을 적용한 화장품으로 자외선 차단제, 미백효과, 주름방지제 등으로 구분된다. 이러한 제품은 만들어기 위해 개발된 나노기술을 보면 나노캡슐 및 나노리포존, 나노입자 코팅기술에 대한 기술로 대부분 특허를 취득하고 제품 출시를 하고 있는 기술들이다. 이들 화장품을 생산하는 기업은 대표령, 한국립마, 나노하이브리드, LG생활건강, 비타코스 등으로 대부분 화장품분야의 대기업과 신규 진출한 화장품 회사들로서 현재 시장되고 있는 나노 화장품에 들어가는 제품의 <표 2-1>에 나타내고 있다.
표 2-1 시판되고 있는 나노 화장품의 재료

<table>
<thead>
<tr>
<th>제품</th>
<th>재료</th>
</tr>
</thead>
<tbody>
<tr>
<td>After sun products</td>
<td>VITAMIN NANOCAPSULES</td>
</tr>
<tr>
<td>Anti aging</td>
<td>FULLERENES Firming Anti-Oxidant Serum</td>
</tr>
<tr>
<td></td>
<td>FULLERENES Aging Skin Resuscitating Serum</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED GLUCONOLACTATE Anti Aging Finishing Powder</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED INGREDIENTS Vitamin A and C Serum</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED LIPOSOMES Serum</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED ZINC OXIDE, MICRONIZED TITANIUM DIOXIDE</td>
</tr>
<tr>
<td></td>
<td>NANOENCAPSULATED INGREDIENTS RETINOL NANOCAPSULES</td>
</tr>
<tr>
<td></td>
<td>VITAMIN NANOSOMES OF SODIUM LACTATE, NANOSOMES OF CALENDULA,</td>
</tr>
<tr>
<td></td>
<td>NANOSOMES OF WITCH HAZEL, NANOSOMES OF GINSENG,</td>
</tr>
<tr>
<td></td>
<td>NANOSOMES OF UREA, NANOSOMES OF VITAMIN A AND E,</td>
</tr>
<tr>
<td></td>
<td>NANOSOMES OF PRO-VITAMIN B5, NANOSOMES OF</td>
</tr>
<tr>
<td></td>
<td>ALPHA-BISABOLOL AND GERMA II, NANOSOMES OF VITAMIN A</td>
</tr>
<tr>
<td>Anti-itch/rash cream</td>
<td>MICRONIZED ZINC OXIDE NANOENCAPSULATED INGREDIENTS</td>
</tr>
<tr>
<td>Around-eye cream</td>
<td>FULLERENES</td>
</tr>
<tr>
<td></td>
<td>LYPHAZONE NANOSPHERES</td>
</tr>
<tr>
<td></td>
<td>MICROSONE Eye Gel</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED LIPOSOMES</td>
</tr>
<tr>
<td>Blush</td>
<td>MICRONIZED INGREDIENTS</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED POWDER BRUSHES</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED TITANIUM DIOXIDE (COATED or not WITH DIMETHICONE)</td>
</tr>
<tr>
<td></td>
<td>MICRONIZED ZINC OXIDE</td>
</tr>
<tr>
<td>Body firming lotion</td>
<td>NANO DELIVERY SYSTEM reduction Anti-Cellulite</td>
</tr>
<tr>
<td></td>
<td>NANOSOMES OF CENTELLA ASIATICA</td>
</tr>
<tr>
<td>Body wash/cleanser</td>
<td>NANOSOMES OF VITAMIN A</td>
</tr>
<tr>
<td>제품</td>
<td>재료</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td>Bronzer/highlighter</td>
<td>MICRONIZED ITALIAN TALC POWDER
MICRONIZED ROSE QUARTZ POWDER, MICRONIZED TOPAZ POWDER
MICRONIZED ZINC OXIDE
NANO-VITAMINS</td>
</tr>
<tr>
<td>Camouflage makeup</td>
<td>MICRONIZED GLUCONOLACTATE</td>
</tr>
<tr>
<td>Concealed</td>
<td>MICRONIZED POWDER
MICRONIZED TITANIUM DIOXIDE, MICRONIZED ZINC OXIDE
NANOSPHERES OF HYALURONIC ACID AND FULVIC ACID</td>
</tr>
<tr>
<td>Conditioner</td>
<td>MICRONIZED TITANIUM DIOXIDE</td>
</tr>
<tr>
<td>Diaper cream</td>
<td>MICRONIZED ZINC OXIDE</td>
</tr>
<tr>
<td>Exfoliant/scrub</td>
<td>MICRONIZED PEARL</td>
</tr>
<tr>
<td>Eye liner</td>
<td>MICRONIZED TITANIUM DIOXIDE</td>
</tr>
<tr>
<td>Eye shadow</td>
<td>MICRONIZED TITANIUM DIOXIDE(COATED or not WITH DIMETHICONE)
MICRONIZED ZINC OXIDE</td>
</tr>
<tr>
<td>Facial cleanser</td>
<td>MICRONIZED SPHERICAL DIAMOND DUST NANOTECHNOLOGY INGREDIENTS</td>
</tr>
<tr>
<td>Facial moisturizer/treatment</td>
<td>MICRONIZED CORNFLOUR
MICRONIZED LIPOSOMES
MICRONIZED PEARLIZERS
MICRONIZED TITANIUM DIOXIDE
MICRONIZED TOPAZ POWDER, MICRONIZED ROSE QUARTZ POWDER
NANO-PARTICLE DELIVERY SYSTEM</td>
</tr>
<tr>
<td>Foundation</td>
<td>MICRONIZED MINERALS
MICRONIZED TITANIUM DIOXIDE(COATED or not WITH DIMETHICONE)
MICRONIZED ZINC OXIDE</td>
</tr>
<tr>
<td>Glitter</td>
<td>MICRONIZED POWDER</td>
</tr>
<tr>
<td>Hair-loss treatment</td>
<td>NANOSOMES</td>
</tr>
<tr>
<td>Lip balm/treatment</td>
<td>NANO ZINC OXIDE</td>
</tr>
<tr>
<td>Lip Gloss</td>
<td>MICRONIZED TOPAZ POWDER, MICRONIZED ROSE QUARTZ POWDER</td>
</tr>
<tr>
<td>Lip liner</td>
<td>MICRONIZED TITANIUM DIOXIDE</td>
</tr>
<tr>
<td>Lipstick</td>
<td>MICRONIZED TOPAZ POWDER, MICRONIZED ROSE QUARTZ</td>
</tr>
<tr>
<td>Mask</td>
<td>MICRONIZED QUARTZ SILICA</td>
</tr>
<tr>
<td>Moisturizer</td>
<td>LYPHAZOME NANOSPHERES</td>
</tr>
<tr>
<td>Nail treatment</td>
<td>LYPHAZOME NANOSPHERES
MICRONIZED POLYCARBONATED RESIN</td>
</tr>
<tr>
<td>Powder</td>
<td>MICRONIZED FORMULA
MICRONIZED GLUCONOLACTATE
MICRONIZED PIGMENTS
MICRONIZED TITANIUM DIOXIDE, MICRONIZED ZINC OXIDE</td>
</tr>
<tr>
<td>Skin fading/lightener</td>
<td>MICRONIZED TITANIUM DIOXIDE
NANO LOTION
NANO-RETINYL</td>
</tr>
<tr>
<td>Styling gel/lotion</td>
<td>MICRONIZED INGREDIENTS Skin Lightening Gel</td>
</tr>
<tr>
<td>Sunscreen/tanning oil</td>
<td>MICRONIZED INGREDIENTS FORMULA MICRONIZED PIGMENTS
NANOPARTICLES
MICRONIZED PARTICLES
NANOTECHNOLOGY INGREDIENTS
VITAMIN NANOCAPSULES
MICRONIZED TITANIUM DIOXIDE
MICRONIZED ZINC OXIDE</td>
</tr>
</tbody>
</table>

자료: Comments to U.S. Food and Drug Administration
Docket: FDA Regulated Products Containing Nanotechnology Materials
Docket number: 2006N-0107
2. 기술의 연구개발 동향

가. 해외

나노기술은 미국, 유럽, 일본이 국가전략으로서 체계화하여 연구개발에 경합이 붐어 ‘꿈의 기술’이다. 미국은 지난 2000년 5억 달러의 예산을 투자해 국가전략으로 나노기술개발을 확대해 추진하고 있고, 일본 역시 정부산학 종합과학기술회가 나노기술과 과학기술 기본계획의 중요 분야로 선정하여 연구 개발에 집중적으로 투자하고 있다.

특히, 일본이 나노기술의 실험실에 대해 주목하고 연구를 진행해온 미국, 유럽, 일본은 화장품 선진국이라는 브랜드가 강하고 있는 장점을 살리면서 연구개발에 뛰어 들고 있기 때문에 향후 화장품 분야에 있어서 나노기술의 활용도는 더욱 높아질 것으로 기대될 뿐만 아니라 연구개발에 대한 각국 정부의 전략적인 지원이 예상되고 있다.

일본의 경우 지난 1993년 미국 미쓰비시를 통해 나노기술을 화장품에 적용시킨 사업화가 진행된 바 있다. 소위 제3의 탄소로 축정되는 풀리탄의 기능에 주목하여 이 물질을 응용하는 사업화가 진행된 결과, 직경 0.7nm의 풀리탄을 이용한 피부 노화방지용 화장품을 만들었다. 이 풀리탄이 체내의 프리 라디칼을 흡수한다는 점, 프리 라디칼의 흡수율은 피부노화방지에 이용되는 비타민 E의 4배가 높다는 점, 그리고 이러한 특성을 자외선 차단제와 조합시키면 특이한 성질의 화장품
을 제조할 수 있다는 확신을 가지고 사업화에 착수한 결과이다.

세계 화장품 업계를 봐 볼 때 나노기술이 체화된 화장품을 만드는데 있어서 선구자 역할을 하고 있는 대표적인 브랜드는 랑콤 사이다. 이 화사는 화장품재료를 각질층을 통과해 피부 깊숙이 침투할 수 있도록 나노 스케일인 100~200 nm 크기의 나노존을 이용하는 기술을 개발했다. 이 나노기술은 거친 피부로 고생하는 여성들의 요구에 부응하는 화장품인 프리모니아로 출시의 모대가 되었으며, 그 후 세계시장을 점유하게 되었다. 이와 같이 비타민과 나노캡슐 기술을 최초로 성공적으로 연결한 결과 랑콤 사는 여성들에게 눈에 띄게 점어진 피부를 만들어주는 피부과학 분야의 독보적인 존재로 부각되었고, 현대여성의 피부를 책임지는 제품을 만드는 회사로 자리매김하게 되었다.

기능성 화장품이 각광을 받고 있는 시대는 단순한 미용효과보다 제품의 기능과 성분에 대한 관심이 증가하고 있는 시대이다. 이러한 시류에 편승해 화장품 성분이 피부에 보다 빠르고 완벽하게 침투할 수 있게 해주는 나노기술은 화장품이 주는 미용효과 뿐만 아니라 목적으로 하는 기능의 구현을 국내화시켜 줄 수 있는 기술이므로 크게 각광을 받고 있다.

나. 국내

우리나라는 외국에 비해 늦게 기술개발에 들어간 만큼 나노기술 분야에 있어서는 외국보다 뒤처져 있다. 하지만 후발주자로서 선진국을 면치마냥하여 연구의 효율성을 높이고 있다. 많은 노력 끝에 최근 국내에서 나노기술을 응용한 제품이 앞 duro이 출시되고 있고, 기술력에 숭부를 걸어 해외시장에서 함께 경쟁할만한 수준으로 발돋움하고 있다. 이는 우리나라에서도 정부육성 투자부문으로 나노기술을 체택하고 투자를 시작하고 있으며, 화장품 업체가 글로벌 시대에 대응할 수 있도록 노력하고 있음을 의미한다.

현재 시장에서 나와 있는 화장품의 대부분은 나노기술을 적용한 화장품으로 자외선 차단제, 미백효과, 주름방지제 등이 있으며, 이들 제품에 체화된 나노기술은 나노 캡슐 및 나노 리포즈, 나노입자 코팅기술에 대한 기술 등이다. 관련 업체들은 대부분 이 기술들을 바탕으로 특허를 취득하고, 제품을 출시하고 있다. 일부 기업의 나노기술 화장품 관련 보유기술은 <표 2-2>와 같다.
표 2-2: 일부 기업의 나노화장품 기술

<table>
<thead>
<tr>
<th>업체명</th>
<th>브랜드</th>
<th>기술 특징</th>
</tr>
</thead>
<tbody>
<tr>
<td>태평양</td>
<td>아이오플</td>
<td>PNS(Phyto nano-sphere)기술, famesol을 함유한 나노 에멀 베이스 사용</td>
</tr>
<tr>
<td>LG 생활건강</td>
<td>라크베르, 이자녹스</td>
<td>인지질을 이용해 피부구조와 유사한 형태구조로 유호성분을 안정하게 함유시키는 캡슐제제 적용</td>
</tr>
<tr>
<td>코리아나</td>
<td>엔시아, 코리아나리시</td>
<td>기능성 성분을 피부세포 간격보다도 작은 미세나노솜에 넣어 피부 깊숙이 안정하게 침투</td>
</tr>
<tr>
<td>한국화장품</td>
<td>A3F</td>
<td>기능성 성분 아데노신의 안전성과 효능상승을 위한 나노기술, 미백 기능성 성분 일부만 및 아데노신 적용, 주름개선 성분 안정화 등</td>
</tr>
</tbody>
</table>

자료: 식품과학과 산업, 2002. 12

3. 화장품에 적용되는 나노기술

화장품의 근본적이고 궁극적인 목적이 피부장벽을 효과적으로 투과하여 효능 성분을 체내, 특히 피부로 전달하는데 있는 만큼, 이와 같은 목적으로 위한 나노기술이 가장 먼저, 그리고 가장 활발하게 전개되었다. 이 분야는 제약산업에서의 약물 경피 흡수(Transdermal drug delivery)기술과 매우 밀접한 관계가 있으며, 사실상 그 적용하는 약물의 대상에서의 차이가 있을 뿐 기술자체는 동일하다고 생각해도 무방하다. 또한, 그 시장의 규모와 판매효과를 고려하였을 때에도 가장 첨단의 약물 경피 흡수기술은 제약산업에서 우선적으로 적용되어온 것이 사실이다. 따라서 여기서는 먼저, 의약용과 화장품을 막론하고 경피 흡수기술 분야를 살펴보고, 또 다른 하나의 영역으로서 화장품에 나노기술이 특이적으로 응용된 부분을 살펴보도록 한다.

경피흡수를 위한 나노기술은 피부장벽을 투과하기 위한 전달체(Carrier) 개발기술로서 그 성상에 따라 다음의 두가지로 분류할 수 있다.

첫째는 용매에 용해된 분자형태의 약물을 피부에 전달하기 위한 플로이드 시스템인 나노액체(Nano-droplets)의 제조기술이며, 물체로는 용매에 잘 녹지 않는 물질(약물)을 피부에 전달하기 위해 물질경계, 혹은 용기에의 크기를 줄이거나 포집하는 나노입자(Nano-particle)의 제조기술이라고 할 수 있다.

이 두가지 안에는 각각 물질을 용해시키기 위한 가용화기술이나, 나노입자의 용 접을 막기 위한 분산기술, 물질의 성질을 안정하게 유지시키기 위한 안정화 기술 등이 복합적인 의미에서의 나노기술로서 모두 포함되어 있다.
또한 이 나노 전달체 개발기술을 제조 방법에 따라 나누면, 분자의 자기조립에 의한 나노 구조체의 제조 (Bottom-up 방식), 나노 크기가 될 때까지 물리적 에너지를 가하여 분해, 분할시키는 방식 (Top-down 방식)으로 나눌 수 있고, 나노액적이 나 나노입자 모두 이 두 가지 방법을 적절히 조합, 선택하여 제조가 가능하다.

위와 같은 다양한 기술들에도 불구하고 여전히 약물 경피흡수에 있어서 나노기술의 효율성에 대해서는 의문이 남게 된다. 이는 피부장벽이 갖는 고유한 방어력을 무마시키는 것이 단순히 크기를 작게 하는 것만으로 가능하나는 점에서 충분하게 되는데, 피부의 물리화학적 장벽특성이 아직 100% 규명되지 못하였기 때문에 현재의 화장품을 비롯한 의약용 경피 흡수기술은 이 같은 취약점에서 자유롭지 못하다. 따라서 나노입자나 나노액적 모두 그 크기뿐만이 아니라 그 자체의 형태, 재질, 표면 작용기, 유-수 분배계수 등의 매우 복잡한 요인들에 의해서 그 피부투과의 정도가 변화하게 되며, 현재의 나노기술은 이 같은 요인을 규명하여 그 효율을 극대화 위해 노력하고 있다.

표 2-3 10가지의 예상되는 특성

<table>
<thead>
<tr>
<th>Reported Date</th>
<th>Materials</th>
<th>Problems/Contents</th>
<th>Reporter</th>
</tr>
</thead>
<tbody>
<tr>
<td>1997</td>
<td>TiO₂, ZnO nanoscale</td>
<td>Free radical in skin cell, damaging DNA</td>
<td>Oxford University</td>
</tr>
<tr>
<td>2002. 3</td>
<td>Engineered nanoparticle</td>
<td>Accumulation in the organs and cells of lab animals</td>
<td>Mark Wiesner</td>
</tr>
<tr>
<td>2003. 3</td>
<td>Nanotube</td>
<td>More toxic response than quartz dust</td>
<td>Robert Hunter NASA</td>
</tr>
<tr>
<td>2003. 3</td>
<td>Nanoparticle in air</td>
<td>Accumulation in the human body</td>
<td>ETC group</td>
</tr>
<tr>
<td>2003. 7</td>
<td>Buckytube</td>
<td>Easily absorbed by earthworm, move up the food-chain, and reach human</td>
<td>Viki Cohan</td>
</tr>
<tr>
<td>2004. 1</td>
<td>Nanoparticle</td>
<td>Easily move from nasal passageway to brain</td>
<td>Gunter Oberdorster</td>
</tr>
<tr>
<td>2004. 1</td>
<td>Nanoparticle</td>
<td>Require new toxicity test</td>
<td>Peter H. M. Hoet</td>
</tr>
<tr>
<td>2004. 1</td>
<td>Au nanoparticle</td>
<td>Move across placenta from mother to fetus</td>
<td>Vwyjiti Howard</td>
</tr>
<tr>
<td>2004. 2</td>
<td>Cadmium Selenide nanoparticle</td>
<td>Cadmium poisoning</td>
<td>Mike Sailer</td>
</tr>
<tr>
<td>2004. 3</td>
<td>Fullerene</td>
<td>Brain damage in juvenile fish</td>
<td>Eva Oberdorster</td>
</tr>
</tbody>
</table>

자료: 김영훈, 이종현, 나노기술의 유해성, News & Information for Chemical Engineers, 서울대학교 화학생물공학부, 23(3), 2005

의약용 약물 경피 흡수기술에는 화장품 산업에서 아직 제품에 적용되지 않은 독특한 기술이 있는데, 마이크로바늘(micro-needle)이 사용된 기술이다. 물론 그 크기의 범위에서 아직 통상적으로 나노기술로 규정하는 범위(0.2~100 nm)에는 포함되지 않지만, 나노 수준의 제어기술이 필요하며 매우 효과적이고 가장 전방이 빛은 약물 전달 기술이라고 할 수 있다. 피부장벽을 물리적으로 매우 국소적으로 파괴하고 그 경로를 통해 약물을 전달하는 방식으로 현재 국내에서는 (주)테라텍과 같은 다수의
바이오벤처기업이 활발하게 기술을 개발하고 있다. 이 기술이 보다 전진된다면, 화장품을 위한 제품에서도 중요한 분야로 성장할 가능성이 높다.

나노역적 제조기술은 계면활성제를 이용한 마이셀 가용화, 오일과 물의 계면에 계면활성제를 배치시킨 나노유화기술을 들 수 있는데, 여기서 마이셀 가용화는 넓은 의미에서 Bottom-up 방식으로 분자의 자기조합에 의한 제조방법이라고 표현할 수 있다.

가. 마이셀

계면활성제의 접합체인 마이셀은 수용액에서 친수성기가 수면 바깥쪽에 늘어서고, 소수성기가 안쪽에 모여, 어떤 농도 범위에서 구형을 만든다. 친수성기로 이온화한 부분이 바깥쪽을 향한 마이셀 주위에는 강한 전기장이 형성된다. 수용액 속의 셀은 열역학적으로 안정하며, 클로이드입자로서 취급된다. 마이셀의 안쪽은 소수성기가 밀집한 영역인데, 계면활성제 마이셀 수용액에 벤젠과 같은 물에 난용성인 물질이 첨가되면, 벤젠은 안쪽의 소수성 부분으로 들어가게 된다.

<그림 2-2> 마이셀
자료: www.aquanova.de

마이셀 기술은 피부에 침투하고자 하는 특정 물질을 체내 성분과 유사한 나노캡슐로 감싸 피부 속에 침투시키는 방법이다. 갤슐로는 수심 나노 크기의 '리포습'이 널리 사용되는데, 리포습은 물을 좋아하는 머리 부분(친수성)과 오일을 좋아하는 꼬리부분(소수성)으로 구성된 지질이란 물질이 모여 축구공과 같은 2중층 형태를 이
루고 있다(그림 2-2 참조). 이러한 리포슘 이 폐부와 만나 폐부 속으로 침투되면 시 캡슐 속에 들어 있는 몸에 좋은 생명활동 물질이 캡슐 밖으로 나와 그 기능을 발휘된다.

<그림 2-3> 계면활성체 분자의 자기조립화 과정
자료: 유용, KAIST, 화학과 기능성 나노물질연구단, 2007

<그림 2-4> 농도와 표면장력에 따른 마이셀 형성
자료: 김준오, Application of Nanotechnology in Cosmetic Industry, 아모레퍼시픽, 2006
나. 유화(emulsion)

일반적으로 유화(emulsion, 에멀전)란 물과 오일처럼 서로 섞이지 않는 액체의 한쪽을 미립자(분산점) 상태로 다른 한 액체(분산매) 중에 안정한 상태로 분산시킨 것이다. 화장품에서의 유화기술은 매우 중요한데, 이는 제품의 안정성, 안전성, 기능성과 밀접한 관련이 있기 때문이다. 유화는 그 목적에 따라 다양한 종류 및 농도, 사용한 유화제(이며단성제)에 한계가 있고, 소가의 목적에 적합한 것을 얻는 것은 쉽지 않다.

화장품용 유화의 종류를 형태별로 분류하면 크게 수중유형(O/W type), 유중수형(W/O type), 다중형(Multiple type) 유화로 나눌 수 있다. <표 2-4>에 화장품에 사용되는 유화형의 장단점을 서술하였다.

<table>
<thead>
<tr>
<th>유화형태</th>
<th>연속상</th>
<th>분산상</th>
<th>장점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simple</td>
<td>O/W</td>
<td>물</td>
<td>오일</td>
<td>산뜻한 감촉, 경제성 우수, 안전성 우수</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>수분유지력, 내수성, 지속성 부족</td>
</tr>
<tr>
<td></td>
<td>W/O</td>
<td>오일</td>
<td>물</td>
<td>내수성, 지속성 우수</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>발려성, 사용촉감 미흡</td>
</tr>
<tr>
<td>Multiple</td>
<td>W/O/W</td>
<td>물</td>
<td>물/오일</td>
<td>유효성분의 안정화, 산뜻한 사용촉감</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>경제성 및 안전성 양호</td>
</tr>
<tr>
<td></td>
<td>O/W/O</td>
<td>오일</td>
<td>오일/물</td>
<td>유효성분의 안정화, 독특한 사용촉감</td>
</tr>
</tbody>
</table>

한편, 나노입자의 크기에 따른 유화형태의 분류에 의하면 마크로 에멀전(macroemulsion), 마이크로 에멀전(microemulsion), 나노 에멀전(nanoemulsion) 등으로 나눌 수 있다. 그런데 최근 유화제 및 유화기술의 발달과 함께 마크로 에멀전(약 0.5~10 μm)과 마이크로 에멀전(약 10~50 nm)의 중간 위치에 해당하는 약 50~500 nm 정도의 크기를 갖는 나노 에멀전의 이용이 활발하다. 나노 에멀전의 경우 일반 에멀전에 비해 크기가 작기 때문에 외관이 퍼른 빛을 띄며, 보통의 에멀전보다는 상대적으로 안정한 편이나 열역학적으로 안정한 수준은 아니다(<표 2-5 참조>)

<표 2-5> 입자의 크기와 에멀전
화장품에서 유화 제형이 많이 이용되고 있는 것은 다음과 같은 장점을 가지고 있기 때문이다.
- 수용성 원료와 유용성 원료를 비교적 간단히 혼합 가능함
- 원료 자체와는 다른 외관 및 사용감
- 수용성 원료와 유용성 원료를 동일 조건에 조합시켜 품질 향상이 가능함
- 뒷부에 미치는 영향을 조절할 수 있음
- 유화상태(예: 젤)을 조절하여 다양한 사용 목적에 맞게 조절이 가능함
- 미장의 유용성 분을 뒷부에 균일하게 전달 가능함
- 유지류 단독으로 얻기 어려운 뒷부 보호작용을 부여함
- 뒷부상에 없게 도포가 가능하고 오일감이 적음
- 광택 및 유색성의 외관으로 상품 가치를 향상시킴

유화의 형태 및 물성에 영향을 미치는 요소로는 유화제의 종류와 양, 내성과 외상의 용적비, 구성성분의 물성, 유화조진 및 방법 등이 있으며, 이들에 의해 크게 영향을 받는다.

나노 애헨전 기술은 액상의 미립자를 수중에 분산시키는 기술로서, 이 기술은 화장품에서 효능, 효과를 제공하는 환경인물질의 경과 품수를 축진한다. 나노 애헨전 등과 같은 유화기술은 이미 미국, 일본, 프랑스 등의 화장품 업계에서 실제로 응용되고 있으며, 특히 생체의 단백질, 당질, 세포조직 등이 초분자적 자기 형태에 의해 만들어지는 초분자화학(일반적인 공유결합에 의한 화학의 반응을 초월하는 비공유 결합의 화학)의 특성을 살린 생체재료의 개발에 관심이 모아지고 있다.

나노 화장품의 특성은 가장 잘 나타나는 나노기술 중에서 가장 대표적인 기술 방법은 나노 애헨전이다. 기존 애헨전을 나노 사이즈인 나노 애헨전으로 만들기 위해 수분과 기능성 오일이 섞인 화장품에 수차례 충격을 가하여 물 분자가 오일 입자를
감싸게 한다. 이 기술은 나노 사이즈 오일의 구성 비율이 전체의 20%를 넘어가면 쉽게 달라붙는 단점을 가지고 있다. 이러한 이유 때문에 나노 화장품이 크림이 아닌 액체 상태로 판매되고 있다.

제조기술로는 D상 유화법과 Hlb 유화법 등이 있어 이들이 화장품에 많이 이용되어 왔다. 제조방법에는 가용화 영역을 이용하는 방법, 고압 호모게나이저를 이용하는 방법, 우축법에 의한 제조 등이 있다.

에밀전 설계를 의미하는 Nanofludics(나노입자와 플라스마 에밀전을 사용하는 것)의 관심사는 어떻게 하면 보다 나은 에밀전을 만들 수 있을까 하는 질문에 답을 주는 것이다. 이를 바탕으로 에밀전을 만들고 효율적으로 조절할 수 있는 능력을 갖게 된다. 또 하나의 새로운 시도는 플레이트 안의 나노포어(nanopores)를 이용하는 것이다. 나노 포어는 운반체 안쪽에 위치하여 유분을 흡착하고, 반대쪽 면에는 계면활성 기능을 부여하여 수분을 흡착하게 한다. 에밀전 입자 크기는 김이주의 압력을 변화시킴으로 조절 가능하다. 최근에 한 중소기업에서 나노 에밀전 크기의 한계에 도달하여 크림형 나노 에밀전을 만들 수 있는 기술을 개발하여 국산 나노 화장품의 경쟁력을 한 단계 올리고 있다.

나노 유화기술은 고압유화기(High pressure homogenizer)와 같은 장비를 이용하여 제조하는 대표적인 Top-down 방식이라고 할 수 있다. 이와 같은 고압 유화방법은 장치산업으로 에너지 소모가 큰 단점이 있는 대신 기술의 적용이 용이하다. 사실, 나노 크기의 액체를 갖는 유화입자는 통상적인 제조방법인 마이크로 에밀전 유화기술(Micro-emulsification)에도 제조가 가능하나 고압유화기를 이용하는 것이 제조비용의 운용 폭을 넓힐 수 있는 방법이다.
<그림 2-5> 고압 유화과정

자료: 김준오, Application of Nanotechnology in Cosmetic Industry, 아모레퍼시픽, 2006

한국생명공학연구원에서는 나노기술을 국내 제조기술에 접목하여 나노고드, 설비 입자를 만들고 이들을 이용하여 색조화장품을 제조할 수 있는 기술을 개발하였다. 이 기술은 우선 나노고드와 나노설비를 이용하여 색의 삼원색인 빨간색, 파란색, 노란색의 매우 얇은 나노입자들을 제조한 후, 이들 나노입자들을 다양한 비율로 혼합하여 모든 색을 구현하는 것이다. 이 기술을 화장품에 적용하여 인체에 무해한 나노입자 색조화장품 제조에 성공한 것이다.

또한, 국내 화장품 기업 비타코스는 나노 에멀션 크기의 화장품에 가까운 20nm 크기의 크림입자를 만들 수 있는 제조기술을 개발해 특허를 획득했다. 지금까지의 나노기술은 제조기술상의 문제와 경제적 요인에 의해 양상의 나노 에멀션 유형이 주류를 이루었으나 최근에 기존의 고압유화법과 전상품도 유화법을 통해서는 만들 수 없는 크림제형의 100% 나노 에뮬션 제조가 가능해졌다. 이 기술은 기존의 액상 타입 나노 제품뿐만 아니라 크림형 나노 에멀션 제품도 제조할 수 있는 기술로서, 품질 향상 뿐만 아니라 제조 가격도 절감할 수 있어 국산 화장품의 품질 향상은 물론 세계시장에서의 경쟁력도 높이는 효과를 주고 있다.

다. 인지질과 리포슘

인지질은 생체막을 구성하는 주성분으로 생체전화적 화장품 제조에 있어서 많이 응용되고 있는 물질이다. 인지질은 인간기의 결합된 알갈기의 종류에 따라 phosphatidyl choline(PC), phosphatidyl ethanolamine(PE), phosphatidyl glycerol(PG), phosphatidyl serine(PS) 등 여러 가지 종류가 있다(<그림 2-5>).
<그림 2-6> 인지질의 분자 구조

인지질은 리포솜 제조에 주로 이용되어 왔지만, 최근에는 유화제로의 이용이 활발하다. 특히 나노 에멀션 같은 미세한 유화입자를 얻기 위해서는 고압 호모게나이저(<그림 2-5>) 등 강력한 에너지를 필요로 하는데 인지질이 매우 유용하게 이용되고 있다.

리포솜은 약물 운반체 및 약물 전달체의 역할을 하기에 적당한 크기인 80~200nm이며 그 크기에 따라 안정성이 달라지기도 한다. 리포솜의 원료인 오렌지색의 레시틴은 난황으로부터 분리하여 얻는 물질로 모든 세포의 필수성분인 생리적 유화체로서 인체 천화성, 무자극, 무독성의 특징을 가지고 있다.

<그림 2-7> 리포솜 구조
전수성과 전유성을 동시에 갖고 있는 리포솜은 내부에 전수성 공간이 있고 외부로 건성성을 갖고 있는 표면에 세포체를 말한다. 이런 성질 때문에 리포솜은 생리활성물질을 encapsulation 할 수 있는 능력을 갖게 되며, 리포솜에 갇힌 생리활성물질은 한꺼번에 방출되는 것이 아니라 서서히 시간을 두고 방출되는 현상을 보여준다. 따라서 리포솜 화장품을 사용할 경우 일시적인 효과가 아니라 지속적인 효과를 보게 된다. 또한 리포솜은 피부 생체 지질막과 구조적으로 유사하기 때문에 피부피부효과가 좋아 의약품, 화장품 분야에 널리 사용되고 있다.

리포솜은 극성과 미극성 물질을 모두 붙일수 있게 되며, 다양한 소수성 밴을 통과하여 붙어있는 약물과 세포 내로 운반 할 수 있기 때문에 약물 수송체로서의 용도가 많고, 반면에 사용되는 지침은 화학적으로 불안정하여 단화가 쉽게 일어나므로 장기간 보관의 어려움이 있으며, 가격이 고가이고, 정제가 까다로운 단점이 있다. 이러한 이유 때문에 화학적으로는 안정하고, 가격이 저렴한 합성 화학성 물질을 이용한 약물 수송체 개발에 시도가 이루어지고 있다.

국외에서는 나노 진구체를 이용한 각종 기능성 성분들을 피부에 적용한 연구결과들을 발표하였다. 주로 나노 진구체의 대표적인 리포솜에 관한 연구로 프랑스의 Coletica사에서는 지질 분해를 촉진시키는 slimming liposome에 대한 연구결과를 발표하였고, Denizot박사 연구원에서의는 marine lipid을 이용하여 제조한 리포솜의 경우, 기존 리포솜에 비해 안정성이 증대하여 장기간 보관이 가능함을 발표한 바 있다. 스위스에서는 리포솜을 이용한 수용성 젤 타입의 자외선 보호 차단제를 개발하여 자외선 차단효과가 향상되었다는 연구결과를 보고한 바 있다.

<표 2-6> 리포솜의 제조와 분류
<table>
<thead>
<tr>
<th>리포솜 타입</th>
<th>제조법</th>
<th>크기</th>
<th>모양</th>
</tr>
</thead>
<tbody>
<tr>
<td>MLV (Multilamellar Vesicle)</td>
<td>Vortexing(Hydration) (Banghan법)</td>
<td>0.1~3.0㎛</td>
<td>High loading efficiency, High stability, Broad size distribution</td>
</tr>
<tr>
<td>SUV (small Unilamellar Vesicle)</td>
<td>Sonication</td>
<td>20~50nm</td>
<td>Uniform size, Low loading efficiency, High stability</td>
</tr>
<tr>
<td></td>
<td>Ethanol-injection</td>
<td>30~110n m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cholate-removal</td>
<td>50~100n m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Triton X-100 batch</td>
<td><200nm</td>
<td></td>
</tr>
<tr>
<td>LUV (Large Unilamellar Vesicle)</td>
<td>Ca^{2+}-induced fusion</td>
<td>0.2~1.0㎛</td>
<td>Able to contain micromolecules, High loading efficiency, Broad size distribution</td>
</tr>
<tr>
<td></td>
<td>Ether-infusion</td>
<td>0.1~0.4㎛</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Freeze-thawing</td>
<td>20~200n m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reverse-phase evaporation</td>
<td>0.2~1.0㎛</td>
<td></td>
</tr>
</tbody>
</table>

자료: 김준오, Application of Nanotechnology in Cosmetic Industry, 아모레퍼시픽, 2006

<그림 2-8> 리포솜의 제조
<table>
<thead>
<tr>
<th>업체명</th>
<th>개요</th>
<th>제품명</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mibelle AG-Biochemistry (스위스)</td>
<td>Super-transparent liposome (Isoflavone, Tretinoin, Retinol, UV filter, Fragrance 등)</td>
<td>Lipobelle™</td>
</tr>
<tr>
<td>ROVI Gmbh (독일)</td>
<td>Active materials encapsulated liposome (Vitamins, AHA, Caffeine 등)</td>
<td>Rovisome™</td>
</tr>
<tr>
<td>Lipoid Gmbh (독일)</td>
<td>Active encapsulation (similar to stratum corneum)</td>
<td>Kryosome™ Cerasome™</td>
</tr>
<tr>
<td>Ciba (스위스)</td>
<td>Ultra small liposome (Vitamin A, E, D5)</td>
<td>Tinoderm™</td>
</tr>
</tbody>
</table>

자료: 김준오, Application of Nanotechnology in Cosmetic Industry, 아모레퍼시픽, 2006

세라마이드는 인체로부터 수분 손실을 막고, 외부의 물리적, 화학적, 그리고 미생물에 의한 손상으로부터 신체를 보호함으로써 인간의 생리작용에 있어 중요한 부분을 단단히 있는 것으로 알려진 표재 투과 장벽의 주요한 구조적 구성 성분이다. 외부 장벽기능강화와 자극 완화 효과가 제한내에 단순히 분산된 세라마이드보다 세라마이드를 구성성분으로 하는 나노립솜을 함유한 경우 보다 우수하게 나타났다[1].

라. Encapsulation

외부환경으로부터 core material의 보호하기 위한 방법으로 무기/유기 하이브리드 시스템의 표면을 개선한다. 제조방법은 DDI에 녹인 후 스테렌을 이용하여 에멀젼 시키고 다시 물에서 에멀젼과 중합하여 나노입자를 만든다.

![Diagram of Encapsulation Process](image)

<그림 2-9> Encapsulation 과정
자료: 홍재민 외, 나노입자의 개요와 기술 동향 및 전망, KISTI, 2005

마. 나노입자 제조기술

나노입자의 제조기술은 실험적인 단순한 그라인딩과 같이elmet 분쇄하는 방법으로 제조되는 나노분말로부터 줄-결 합성법에 의한 나노 무기입자의 제조, 양전액성 고분자를 이용한 고분자 응집제, 리피드 자기조립에 의한 리포솜, 고체 리피드 나노 입자(Solid lipid nanoparticles), 나노금속입자의 합성 등이 모두 나노입자 제조기술
이라고 할 수 있다. 물리적인 분화에 의한 방법이 아닌 분자의 자기조림, 혹은 합성을 이용한 나노구조체의 제조방법이 어떻게 보면 가장 나노기술의 궁극적인 설계에 가까운 기술로 레고와 같이 단위 분자를 구성하는 분자를 설계하는 것이 중요하고 기술적으로 개발이 어려운 만큼, 대량생산시 에너지 소모가 매우 낮고, 대량생산이 용이하다. 대표적인 사례로 고분자 계면활성제, 리피드 구조체, 멘드라이며 등을 들 수 있다. 이들은 대부분 내부에 전달하고자 하는 약물을 포집하고, 수상에 분산된 상태로 존재하게 되는데, 외부강력을 투과하기 위해 자신의 부피를 최소화하고 내부의 안정한 포집공간을 어떻게 구축하느냐가 기술의 핵심이라고 할 수 있다.

다양한 여러 종류의 세포들과 독특한 구조로 이루어진 피부는 건강과 생존에 매우 중요한 복합적인 기능을 가진 기관으로 나노입자를 이용한 생리활성물질의 경피흡수는 매우 중요하다. 생리활성물질이 경피흡수를 위해 미립자를 이용하는 방법들이 연구되고 있는데, 미립자로는 리포슘, solid lipid nanoparticles(SLN), 클라겐 미립자, 고분자형 미립자 등이 있다. 이러한 기술의 핵심은 전달체들이 피부표면에 머물면서 지속적으로 약물을 외부로 방출하는 원리를 이용한 것으로서 약물의 활성시간을 지속시키면서 피부의 자극을 완화시키는 작용을 한다는 특징을 가지고 있다. 나노입자를 경피흡수용 전달체로 사용할 경우, 나노입자는 큰 입자의 분산액에서 분산할 수 없는 접착성을 나타낼 뿐만 아니라 피부표면에서 접착성을 끌어내기 때문에 생리활성물질의 피부 출혈력은 더욱 높아지게 된다.

나노디스코션 기술은 수중 또는 기타 역사에 분산된 고체성의 나노입자를 제조하는 기술이다. 이 외에 일반적으로 사용되는 나노입자 제조방법으로는 고분자 분산에 의한 나노입자 제조 기술이 있다.
자외선 차단제를 solid lipid 나노입자를 이용하여 피부에 흡수시킨 결과, 흡수율이 증가했다는 연구결과가 발표된 바 있다. 영국에서는 노화 방지에 사용되는 렐,놀(retinol) 성분을 리포솜에 붙임한 경우 렐의 안정성이 몇 배 개선된다는 것을 보고한 바 있으며, 국내에서는 태평양학회에서 리포솜을 함유한 화장품에 관련된 특허를 받은 바 있다.

다공성 고분자 물질을 이용하는 기술은 수십 년 전에 다공성 고분자 물질 안에 노화방지, 기능성 성분을 넣어 피부에 침투시키는 방법이다. 다공성 고분자 물질은 체내 흡수되면 일정시간이 지나 후 체내 효소에 의해 분해되는데 고분자 물질 자체가 체내 성분으로 만들어지기 때문에 인체에 해는 없다. 이 고분자 물질은 피부 안에 흡수된 후 자기 몸에 있는 모세혈관과 같은 미세한 구멍들을 통해 미백효과 등을 가진 기능성 성분을 서서히 방출해 화장품 효과를 지속시킨다.
<그림 2-11> 분자측합법에 의한 나노입자 제조
자료: 홍제민 외, 나노입자의 개요와 기술 동향 및 전망, KISTI, 2005

바. 분체의 측량활성

나노 화장품에 이용되는 또 다른 주요기술은 분체의 측량활성이다. 화장품 분야에서 분체의 표면처리는 먼저 분체의 측량활성을 높이고 후 다음에 원하는 기능을 분체에 부여하는 일이다. Silicon 화합물의 나노 코팅으로 분제표면에 있는 복수개의 활성점을 한 번에 높이는 방법으로는 분체의 표면을 않은 플리커를 이용해 물리적으로 고정하는 방법이 효율적이어서 흔히 사용된다. 또 다른 방법으로는 종합개시제를 표면에 흡착시킨 후 모노머를 접촉시켜 표면에서 중합이 일어나도록 하는 방법이 있으나 반응이 끝난 후 종합개시제의 제거과정이 태두되기 때문에 이 방법으로는 양산이 어렵다. 분제표면에 1 nm 이하의 초박막 PMS(polymethylsiloxyne)를 코팅할 때는 분제의 표면적을 계산하고, 원하는 두께의 막을 만들 때 필요로 하는 양의 PMS를 첨가하는 방법을 이용한다. 이렇게 만들어진 분체는 소수성을 나타내며, 분제표면의 90% 이상이 PMS로 고무되었기 때문에 측량활성이 높이지만 PMS 코팅에 의해 분체의 산화나 결정성이가 억제된다. 또한 고온(500℃)에서도 소성에 의해 실리카 모양의 복합산화물을 생성하는 특성을 가진다.

메이크업 화장품에 있어 분체의 문제점은 분체의 측량활성, 분체에 따른 분산성
의 차이 등이나 기능성 나노코팅에 의해 두 가지 문제가 동시에 해결된다. 예를 들면, 유화 화운테이션에 알킬(alkyl)기 부가분체를 배합하면 부가분체는 유상에 고르게 분산되어 표면이 완벽스라 같은 구조를 갖게 된다. 이러한 성질을 이용하면 oil/wax계의 입체구조를 피괴하지 않고도 오일을 균일하게 배합할 수 있어서 고령의 유기 화운테이션을 만들 수 있다. 화장품에서는 분산성 외에도 여러 기능이 필요한 나노 코팅기술을 이용하면 살균제, 자외선 흡수제, 색소, 산소, 호르몬 등을 고정시켜 피부에 흡수되지 않는 안전성이 우수한 화장재료의 공급이 가능하다.

사. 평가기술

국외에서는 경피 흡수 평가를 수행할 때 human skin의 대체품으로서 인공막이나 3차원 배양 세포주를 사용하는 경우가 많다. 사용되는 인공막으로는 각종 절질들을 혼합하여 제조한 인공 절질막, 혹은 단일 고분자 성분의 합성막이 있다. 인공막을 사용해 경피 흡수 평가를 할 때 맵의 표면을 인간 피부의 절질층과 유사하게 만드는 것이 중요하다. 그런 이유 때문에 시험하기 전 우선 사용할 인공막은 isopropyl myristate 등의 절질 성분으로 처리하는 전처리 과정을 거친다. 로테알 사 등의 화장품 회사에서는 흡수평가 방법으로서 3차원 배양 human keratinocyte layer를 사용하는 연구들을 진행하고 있다.

국내에서는 서울 원자력 병원 소재의 MTT사에서 human keratinocyte를 3차원적으로 배양한 KeraSkin을 피부 흡수 스케니닝 시험 평가용으로 시험하고 있다. 또한 국내에서 나노 전구체의 경피 흡수도 평가기술을 일관적으로 제형의 흡수도를 평가하는데 중요한 자료로 사용할 수 있다는 연구결과가 발표된 바 있다.

4. 기능성 및 나노 화장품의 연구 동향

최근에는 화장품 제조기술에 치유의 개념이 도입된 cosmeceutical의 개발에 관심이 집중되고 있다. Cosmeceutical이란 cosmetics와 pharmaceutical의 합성어로서, 크게 볼 때 그 분야의 연구개발에는 기능성을 갖고 있는 활성성분의 연구, 효능성분의 경피 흡수 방법에 관한 연구 그리고 이를 포함한 제형의 연구 및 피부생리에 대한 기초연구가 포함된다. 최근 화장품에는 기능성이 특별 강조되고 있다. 피부과학의 발전과 더불어 화장품에 의한 미백, 주름방지, 육모 등의 피부 및 모발에 대한 효과 항상에 관심이 높아지고 있다.
<table>
<thead>
<tr>
<th>항목</th>
<th>연구 분야</th>
</tr>
</thead>
<tbody>
<tr>
<td>주름 방지</td>
<td>피부노화 메커니즘에 관한 연구</td>
</tr>
<tr>
<td></td>
<td>신진대화 촉진 및 클라겐 함성 촉진 물질 개발</td>
</tr>
<tr>
<td></td>
<td>Cytokine의 개발 및 응용</td>
</tr>
<tr>
<td>보습</td>
<td>Ceramide 및 pseudoceramide의 개발</td>
</tr>
<tr>
<td></td>
<td>Lamellar liquid crystal 구조 재형 개발</td>
</tr>
<tr>
<td></td>
<td>고분자 보습 성분의 개발</td>
</tr>
<tr>
<td>보호</td>
<td>천연물로부터 항산화, 항염증, 자외선 차단 성분 추출</td>
</tr>
<tr>
<td></td>
<td>자외선 차단제의 개발</td>
</tr>
<tr>
<td>미백</td>
<td>염증, 생성 억제 성분 개발</td>
</tr>
<tr>
<td></td>
<td>호르몬 발현 억제 및 유사체의 개발</td>
</tr>
<tr>
<td>여드름 방지</td>
<td>피지 분비 억제 물질 개발</td>
</tr>
<tr>
<td></td>
<td>항염증 성분 활용</td>
</tr>
<tr>
<td>소재개발</td>
<td>무기분체의 크기 표면 특성 개량</td>
</tr>
<tr>
<td></td>
<td>유기/무기 복합화 기술</td>
</tr>
<tr>
<td>재형 개발</td>
<td>Encapsulation을 이용한 관심 성분 안정화 시스템 개발, 기시적 특이성 부여된 재형 개발</td>
</tr>
<tr>
<td>효능 연구</td>
<td>보습, 미백, 육모, 탄력 등의 효능/효과 시험법 개발</td>
</tr>
<tr>
<td></td>
<td>DNAшuffling, cell surface display, phage display를 이용한 효능원료스크리닝 법 개발</td>
</tr>
</tbody>
</table>

<표 2-8>의 화장품 주요 연구 현황에서 알 수 있듯이 화장품 관련 회사 및 연구소는 피부 생리학 연구에 초점을 맞추고 있다. 이러한 연구결과를 바탕으로 피부의 노화를 억제 할 수 있는 신규물질을 탐색하고, 피부의 노화를 억제할 수 있는 방법을 모색하고 있다. 뿐만 아니라 피부노화예제에 관련된 천연물을 추출하여 그 성분을 규명하고, 그 구조를 알아 천연물 합성방법을 연구 개발하고 있다. 특히 노화지연에 대한 연구는 화장품뿐만 아니라 의약품 산업에서도 꾸준히 연구되고 있는 분야로서 앞으로도 이러한 연구는 계속 진행될 전망이다.
<그림 2-12> 기능성 화장품 관련 기술 흐름도

자료: 생리활서정밀화학지, 2002

가. 주름개선 화장품

(1) 주름개선 기능성 화장품

기능성 화장품 산업에서 가장 관심이 집중되는 분야는 피부노화 지연에 관련된 연구라고 할 수 있다. 유전자 또는 세포수준에서 노화의 원인에 관한 많은 연구가 진행되고 있으며, 피부 주름 생성에 관한 생리학적 연구도 전개되고 있다. 화장품의 관점에서 주름 생성의 지연은 우선 보습제에 의한 각질층의 수준 유지, 자외선 또는 유해 환경으로부터 피부보호, 세로운 세포생성 촉진에 의한 주름방지 등의 관점에서 연구가 진행되고 있다. 주름개선 화장품은 노화를 지연시키거나 자외선 같은 외부요인의 해를 경감시키는 원료를 통해 주름개선과 예방효과를 나타낸다. 이러한 기능성 원료들은 피부노화에 따라 기능이 저하된 세포의 신진대사 촉진과 세포 간 지질의 생성 등을 통해 주름 개선 효과를 보인다.

주름생성의 주요 원인은 나이가 들면서 세포의 분열능력이 떨어지고 세포수가 감소되어 나타나는 노화현상과 반응성이 높은 활성산소가 세포의 주요 구성 물질들
을 좌절하면서 세포의 기능을 저하시키기 때문인 것으로 알려져 있다. 또한 장기간 자외선에 노출된 피부는의 콜라겐과 엑라스틴 등의 기질 단백질이 손상되어 피부내 콜라겐의 양이 부족해지고 탄력 섬유의 변형을 유발하여 피부노화를 촉진시키기도 한다. 그러므로 피부과 이후 여성에서 피부 교환칠의 감소로 주름이 발생하기도 하고, 흰연에 의한 피부 수분량의 감소와 담배연기의 자극으로 인한 콜라겐 생성억제가 주름의 발생 원인이 되기도 한다.

 최근의 항노화 연구 및 원료개발 동향을 살펴보면 안전성이 강조된 노화예방이라는 소극적인 개념에서 효능이 부각된 치료라는 적극적인 개념으로의 전환이라고 볼 수 있고, 그와 더불어 진통의약을 근거로 효능이 입증된 신원료를 도매로 글로벌화시키려는 노력이라고 볼 수 있다. 레티놀 제품의 개선과 안정화 기술개발, 다양한 피부노화 과정에 대한 연구결과를 바탕으로 생리활성 물질의 개발, 보톡스와 같은 단백질 분야의 원료 물질 개발에 대한 연구가 활발히 진행되고 있다.

 피부의 생리활성에 유용한 성분들이 실제로 그 기능을 충실히 수행하기 위해서는 그 성분이 효과적으로 피부에 흡수되어 필요한 위치에 전달되어야 하며 유용한 성분의 피부 내 전달은 쉽지 않다. 이러한 한계를 극복해 다양한 약물 전달의 효율성을 높이기 위한 수단으로 리포솜의 연구와 생물해성 고분자 나노입자에 대한 연구가 활발히 진행되고 있다.
(2) 나노기술을 이용한 주름개선 기능성 화장품

주름 생성은 콜라겐 양과 밀접한 관련이 있다. 따라서 선택적으로 collagenase나 elastase의 활성을 저하시킬 수 있는 성분의 개발이 주요 연구 과제로 떠오르고 있다. 효과적인 주름개선을 위해서는 항염증, 자외선 흡수, 콜라겐 합성촉진, 피부호흡 촉진, ATP합성 촉진, 보습, 수 Scotia, 면역제거 등의 기능을 복합적으로 고려해야 한다. 임상시험을 통해 진정한 개선 효과가 증명된 대표적인 성분은 AHA와 비타민류를 들 수 있다.

국내 한 화장품 업체에서는 나노기술을 이용해 주름개선 기능성 화장품 제조에 성공해 특허를 출원하고 그 기술이 체화된 제품을 개발한 바 있다. 이것은 국내에서도 허브 추출물이며, 비고시 성분인 올레아놀릭산(Oleanolic acid)을 주성분으로 하는 나노 항노화 화장품의 가능성을 크게 상향한 것이다. 임상을 통해 식약처로부터
터 기능성 화장품으로서의 상품가치를 국내 최초로 인정받았다. 난용성이면서 화장품에 적용 시 불안정한 염리아놀릭산을 이용하여 주름개선 효능을 볼 수 있도록 국내 최초로 개발하는데 성공한 것이다. 이 기술은 염리아놀릭산을 100~150 nm 크기의 나노 에멀젼으로 캡슐화하고, 이를 적용한 화장품의 안정성을 위해 천연 다당류인 이놀린(Inulin)을 이용한 고분자 유화제로 2차 캡슐화하여 그 안정성을 높였다는데 그 특징이 있다.

염리아놀릭산은 치료용 허브에 많이 함유되어 있는 항노화 성분으로 콜라겐 생성에 중요한 프로콜라겐(Procollagen)의 합성을 촉진하고, 노화방지에 중요한 세라미드(Ceramide)와 필라그린(Filagrin)의 합성을 촉진할 뿐만 아니라 생성된 콜라겐 등의 고분자 단백질을 파괴하는 효소인 MMP-1의 활성을 저해하는, 다시 말하면 생성은 촉진하고 파괴는 막아주는 이중 노화방지 시스템을 갖고 있는 것이 특징이다.

(가) AHA의 응용

AHA는 각질층의 수분량과 유연성을 증가시키고, 각질박리를 촉진시켜 세포의 신진대사를 촉진시키며, 각질층 세라마이드(ceramide) 함량과 전해의 hyaluronic acid의 함량을 증가시키는 것으로 보고되고 있다. 그러나 AHA의 자외선 반감성 등 부작용이 보고되면서 그 사용에 제한을 받아 부작용을 최소화하기 위하여 cyclodextrin에 AHA를 포집시키는 방법, AHA와 에스테르(ester)를 결합시켜 유도체로 만드는 방법, 고분자와 혼용하여 사용하는 방법 등의 기술을 응용하고 있다.

(나) 비타민류의 응용

파거로부터 외부 주름 개선용으로 가장 많이 사용된 비타민류는 근본적으로 낮은 안정성으로 인하여 사용에 제한을 받고 있다. 특히, 외부의 콜라겐 합성을 증가시키고, 세포의 생성을 촉진시키는 효과를 지니고 있는 비타민 A, 태아놀은 분자 자체가 매우 불안정하다는 단점을 지니고 있다. 이러한 문제점을 해결하기 위하여 특히 고분자를 이용한 태아놀 캡슐화에 대한 연구가 국내외에서 다양하게 진행되고 있다. 프랑스의 양품 사에서는 생물학적 고분자를 이용해 태아놀 나노캡슐을 만들고, 이를 제품화하였고, 국내에서는 액정보고분자 마이크로캡슐을 이용하여 태아놀을 안정화에 성공했다는 기술이 발표되었다.
나. 미백 화장품

(1) 미백 기능성 화장품

미백화장품은 피부에 멜라닌(melanin) 색소가 침착되는 것을 방지하여 기미, 주근깨 등의 생김을 억제함으로써 피부 미백에 도움을 주는 기능을 가진 화장품. 피부에 침착된 멜라닌 색소의 색을 없애 하여 피부의 미백에 도움을 주는 화장품 및 피부의 표면을 깨끗하게 할 수 있는 제품을 말한다.

기미 주근깨 완화제품은 1980년대 초부터 지속적인 연구를 통해 발전되어 왔으며, 기능성 화장품 분야에서 가장 중요한 부분으로 특히 동아시아 지역에서 가장 각광 받는 분야로 전망되면서 제 4세대 제품으로 인식되어 개발이 가속화되고 있다.
<table>
<thead>
<tr>
<th>구분</th>
<th>시대</th>
<th>기술 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>제 1 세대</td>
<td>1980년대</td>
<td>멜라닌 합성과정에서 산화 반응에 억제제를 함유한 미백 화장품 (예: 비타민 C, 비타민 E 유도체)</td>
</tr>
<tr>
<td>제 2 세대</td>
<td>1990년대 초</td>
<td>티로시나제 활성억제 물질을 함유한 미백화장품 (예: 코지산, 알부민, 감초추출물, 상지 추출물, 달나무 추출물)</td>
</tr>
<tr>
<td>제 3 세대</td>
<td>1990년대 말</td>
<td>자외선에 의한 멜라닌 세포 활성화를 억제할 수 있는 정 보전달 약제물질을 함유한 미백화장품 (예: alpha-MSH, 엔도세린 생성억제 물질)</td>
</tr>
<tr>
<td>제 4 세대</td>
<td>최근</td>
<td>멜라닌 세포와 각 정 형성 세포간의 신호전달에 의해 일어 나는 멜라노제의 이동을 억제하거나 멜라닌 생성관련 유 전자의 특성을 이해하여 이들의 생리활성을 조절하는 물 질을 함유한 미백 화장품</td>
</tr>
</tbody>
</table>

그림 2-9
기능성 화장품 미백제 기술 로드맵

자료: 생리활성섬유학회지, 2002
미백 화장품 분야에 있어서의 개발 목표는 기미, 주근깨 완화제품으로 멀리한 생성과 관련된 여러 가지 인자를들을 탐색하여 이들의 활성을 억제할 수 있는 방법을 찾고, 이에 적합한 소자를 개발하여 제품화하는 것이다. 아울러 표피세포 분화와 피부조직에 대한 생리적인 기능을 밝히 깨끗하고 투명하며 맑은 피부를 제공할 수 있는 제품의 개발도 중요하다. 단기적으로는 기존 미백 원료의 안정화를 수행하고, 중장기적으로는 분자생물학적 기술이나 나노기술을 도입하여 신규 미백원료를 개발하고 이용하는 것이 목표이다.

(2) 나노기술을 이용한 미백 기능성 화장품

90년대에 자외선이 피부 노화를 촉진시키고, melanocyte에서 멜라닌 생성 메커니즘이 일부 발현되면서 다양한 미백성분이 개발되었다. 그 후 화장품 업계들은 다양한 미백성분들을 적절히 조합하고 제품화하여 보다 미백효과가 우수한 원료를 얻고자 하였으나 미백성분들은 물 베이스 시스템에서 매우 불안정하다는 문제점을 안고 있었다. 미백성분을 가지고 있는 대표적으로 불안정한 성분인 비타민 C의 경우, 빛, 열, 화학산소 등에 의하여 쉽게 변성되며, 심한 변색과 변취를 동반한다는 점이다. 이러한 변성 거동은 순수한 비타민 C를 사용해 화장품을 만드는 것을 거의 불가능하게 만든다. 그럼에도 불구하고 업계는 비타민 C가 갖고 있는 미백의 장점을 위해 불안정성을 해소할 수 있는연구를 진행하고 있는데, 그 중 하나가 대중 엔지니어 시스템을 이용해 안정성을 높이는 연구이다. 그러나 대중 엔지니어 시스템의 본질적인 열역학적 불안정성으로 인해 문제를 야기 시킬 수 있다. 따라서 현재의 기술로는 궁극적 안정화는 달성하기 쉽지 않은 목표라고 판단된다. 그런 부분적인 한계가 있는 하지만 대중 엔지니어 시스템에서는 물 베이스 시스템에서 보여주는 미백성분의 대표적 화합물인 비타민 C의 변색과 변취와 같은 변성 거동을 막을 수 있기 때문에 이러한 접근법은 수용성 미백 성분 안정화에 이바지 하면서 고기능성 화장품 개발에 있어서 큰 의미를 가지고 있다.

다. 자외선 차단 화장품

(1) 자외선 차단 기능성 화장품

가. 자외선 차단 성분들에 대해 파악 후 미치는 영향에 대하여 관심이 고조되고 있다. 자외선은 피부 표면의 살균작용이나 비타민 D의 합성에 관여하기 때문
에 인체에 필요한 요소라고 볼 수 있다. 그러나 외부가 과도한 자외선에 노출되면
외부의 건조, 주름의 생성, 기미의 발생 등 피부 노화의 촉진과 피부암의 원인이 되
기도 한다. 특히 문제가 되는 자외선은 UVA와 UVB인데, UVB는 오존층에 흡수되
어 지표에서의 광 밀도는 적으나, 피부세포를 구성하는 DNA에 손상을 주거나 피부
암을 유발시킨다. UVA는 침투력이 강하기 때문에 피부 길이가 침투하여 피부 노화
를 촉진시키는 역할을 한다.

자외선 차단제란 자외선을 흡수, 차단 또는 산란시키는 성분을 함유한 화장품을
말하며, 선크림, 선밀크, 선오일 등이 여기에 포함된다. 자외선 차단제는 고지속성
자외선 차단 제품류와 제 자극성 자외선 차단 제품류로 구분하지만, 종류에 따라서
물리적 차단제를 함유하는 것, 화학적 차단제를 함유하는 것, 물리적 및 화학적 차
단제를 모두 함유하는 것으로 분류하기도 한다. 이러한 자외선 차단제 기술개발의
기본 목표는 자외선 차단제의 문제점의 해결하고, 개량제품을 개발하며, 신규 또는
신기능 제품을 개발하는 것이다. 단기적 목표로는 자외선 차단제에 대한 기반기술
을 확립하는 것이고, 중기적 목표로는 효능과 효과가 개선된 신기능 자외선차단제
의 개발 및 효능 평가법 등 핵심기술과 주변 기술력을 제고하는 것이며, 장기적 목
표로는 신기능 자외선 차단제의 상업화 등 국제경쟁력 확보이라고 볼 수 있다.

화장품 산업에서 가장 오래된 나노기술의 적용은 줄-필법이나 합성법에 의해 제
조된 무기 자외선 차단제의 제품 적용이다. 이들은 피부표면에 흡착, 분포하여 자외
선을 산란, 차단함으로써 피부를 보호하기 위한 것인데 작용하는 효과는 의심할 여
지가 없으나 오히려 그 작은 크기로 인해 피부로부터 철두기능성이 증가하여 최근 대
두되고 있는 나노 안전성 분야에서 중요한 이슈가 되고 있다.

(2) 나노기술을 이용한 자외선 차단 기능성 화장품

피부 노화의 적절적인 원인 중 하나로 자외선임이 밝혀지면서 최근 개발되는 대
다수의 제품은 자외선 차단 성분을 함유하고 있다. 자외선 차단에는 미립자인 이산
화탄소나 산화아연 등을 이용한 자외선 산란과 같은 물리적 차단법과 자외선 흡
수제를 이용하는 화학적 차단법이 혼용되고 있다.
UVA와 UVB를 동시에 차단할 수 있는 넓은 영역의 자외선 흡수능력을 지닌 신규 화합물의 개발과 함께 석물 또는 해양 미생물 등에서 새로운 자외선 흡수체를 찾아내고 이를 이용하기 위한 연구개발이 활발하게 진행되고 있다.

라. 기타 제품

이 외에도 주로 메이크업 제품류에 적용되거나 적용될 가능성의 높은 나노분체들은 피부에서 가시광선의 산란을 유도하여 피부톤을 밝게 보이게 하거나 색조를 다양하게 하는 기술로 개발되고 있다.

나노기술을 가능성을 화장품 계형기술에 접목하면 물리화학적으로 불안정한 생리활성물질을 분자 수준에서 안정화시킬 수 있을 뿐만 아니라 활성물질을 선택적으로
외부에 흡수시험으로써 원하는 효능을 극대화 하는 cosmeceuticals 기능을 갖게 할 수 있다. 따라서 화장품 제조 및 유통과정에서 변질되지 않고 활성을 유지하는 화장품을 제조하기 위해서는 나노기술을 기존 기술에 접목시킨 화장품 제형기술의 개발이 매우 중요하다.

<그림 2-18> 나노기술이 적용된 파운데이션

5. 전망과 파급효과

우리가 보다 높은 삶의 질을 추구하기 위해서는 여러 가지 요인이 그 삶의 내용에 포함되어야 할 것이다. 그 가운데 아름다움을 창조하는 화장품의 중요성은 다시 말할 필요가 없다. 특히 최근의 과학기술과 관련한 전문가들은 21세기의 최첨단 기술로 나노기술을 꼭는데 주저함이 없듯이, 나노기술은 우리가 기존에 생각하던 상식을 뒤집는 새로운 융합분야이기 때문에 두구나 주목하는 분야이다. 특히 화장품과 관련한 나노기술의 연구는 최근 그 발전 속도가 급격히 빨라지고 있지만, 보다 익숙한 삶을 살고 싶어 하는 대중들을 만족시키기 위해 더욱더 빠른 속도로 따라가야만 한다. 이제 나노 화장품 시대를 열어가는 우리로서도 나노기술의 중요성을 간과해서는 안 될 것이며 더욱더 신기술 개발에 박차를 가하여 최첨단 나노 화장품의 개발과 그에 따른 부가가치의 창출을 위해서 최선을 다해야 할 것으로 사료된다.

21세기에 경제 사회적 구조뿐만 아니라 화장품과 관련된 환경이 급변하고 있어 기능성 화장품에 대한 국민적 욕구 또한 거대한 것으로 판단된다. 따라서 대내외적 환경변화에 선제적으로 대응해야 한다고 사료된다. 화장품 산업의 주요 환경변화로는 소비패턴의 세분화, 다양화를 들 수 있는데 이러한 추세에 따라 제품 유형과 시
장은 더욱 세분화 될 것으로 예상된다. 따라서 기존의 유형에 따른 소비패턴의 집단적 변화보다는 개인들의 독창성과 자기 강조를 중요시하는 맞춤형 화장품 등의 비중이 확대될 것이다. 한편 병원 의료과, 제약 등 인접 기술과 산업과의 기술적 경계가 더욱 없어지고, 관련 기술과 간의 기술융합이 빈번해져 종합되는 분야에서 새로운 영역이 탄생되며 코스메테러피(cosmeceutical) 시장이 더욱 확대될 것이다.

결국 화장품 산업은 단순한 화장기능에서 기능성이 부여된 화장품으로 급속히 변화하여, 유호성을 개발, 유효성과의 혼합과 안전성의 평가 및 피부 안전성과 환경성이 둔란 답책 개발이 중요한 연구개발 과제로 머무를 것으로 전망된다. 이러한 시대적 흐름을 고려하면서 개개인의 육구를 반복시킬 수 있는 고기능성 화장품 개발을 위해 생명공학(BT) 및 나노과학(NT)에 대한 기반 기술의 발전과 그들 간의 접목은 매우 중요하다고 하겠다.

<표 2-10> 화장품산업의 변화와 전망

<table>
<thead>
<tr>
<th>기분적 기능</th>
<th>70년대</th>
<th>80년대</th>
<th>90년대</th>
<th>2000년대</th>
<th>2010년대</th>
</tr>
</thead>
<tbody>
<tr>
<td>보습,영양, 젖조</td>
<td>보습,영양, 젖조</td>
<td>보습,영양, 젖조</td>
<td>보습,영양, 젖조</td>
<td>보습,영양, 젖조</td>
<td></td>
</tr>
<tr>
<td>기능성화장품</td>
<td>기능성화장품 (이색, 주름개선, 자외선차단)</td>
<td>액수 기능성화장품 (이색, 주름개선, 자외선차단)</td>
<td>액수 기능성화장품 (이색, 주름개선, 자외선차단)</td>
<td>액수 기능성화장품 (이색, 주름개선, 자외선차단)</td>
<td></td>
</tr>
<tr>
<td>첨가품질통합</td>
<td>첨가품질통합</td>
<td>첨가품질통합</td>
<td>첨가품질통합</td>
<td></td>
<td></td>
</tr>
<tr>
<td>능력</td>
<td>능력</td>
<td>능력</td>
<td>능력</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

자료: 배현수. 한방화장품 원료개발 및 성공사례. 2007.4

화장품에 있어서 나노기술 분야를 중심으로 한 전망을 살펴보면 각 연구기관의 향후 화장품 산업에서 사용될 생명활성 물질을 안정화하는 기술 및 그 물질들의 선택적 피부 환경적 향성을 개발하여 특화하고자 할 것으로 보인다. 더 나아가 바이오클라임과 나노기술을 접합해 활성물질의 안정성, 피부흡수 조절기능을 검증된 나노전극체를 개발하고 이용하여 얕은 화장품을 제조함으로써, 다른 기업들의 기술적인 격차를 벌리는 동시에 이론적 극대화하려는 연구투자 전략을 볼 것으로 예상된다.

세계적인 연구 동향을 보면 각 연구소나 관련 업체는 새로운 나노 구조체 개발에
초점을 맞추고 있음을 알 수 있다. 몇 년 전반해도 BT와의 결합이라는 개념이 널리 확산되지 않아 피부조직과 나노 구조체와의 상호작용에 대한 산업계에서의 연구 활동은 그다지 활발하지 않았으나, 최근 들어 BT 분야와 피부과학이 융합된 연구에 집중적인 지원이 이루어지고 있다.

나노입자는 화장품의 배합 물성과 수용성을 향상시키는 성질을 갖고 있으므로 보습 및 노화방지 조성물로 사용되기도 하고, 메이크업 및 헤어 컬러링처럼 피부와 머리카락에 직접 작용해 보호효과를 주기도 하며, 저장성 차단제의 UV 헬터처럼 피부를 보호하는 역할을 하기 때문에 여러 가지 목적을 위해 사용된다.

나노소재와 피부의 상호작용 연구에 관한 방향은 다음과 같이 생각할 수 있다. 우선 고분자 나노입자와 각질층의 상호관계를 규명하여 화장제료형 원료로서의 경파 웜수제를 설계하고, 제조된 고분자 나노 입자와 각질층간 상호작용을 규명하는 연구를 진행한다. 그리고 생리활성물질을 10~1000 nm 수준의 나노 단체에 함유하고, 그 표면성질과 피부특성에 적합하도록 변형시켜 활성성분만을 선택적으로 피부에 서서히 흡수하도록 하는 기술을 개발한다. 그것을 가능하게 하는 세부기술로서는 생리활성 물질의 물리화학적 가공기술, 미립자 단체 개발기술, 미립자 표면 성질의 연구와 미립자 표면 개발기술, 제조화 기술, 피부 보습과정 분석기술 등으로 나눌 수 있다. 이를 통해 기존의 화장품이 고기능성 화장품으로 발전하기 위한 나노기술의 척도는 간편한 개념의 유효, 계량화학적 접근에서 발전하여 신개념, 신기술의 개척에 크게 이바지 하고 있다.

파스널 케어 업계에서는 나노기술을 이용해 자외선 차단제와 항노화 제품 등의 개발에 주력하고 있다. 예를 들어 파스널 케어 분야에서 이산화탄소 및 이산화아연의 나노입자를 사용해 자외선 차단제를 만들 경우 자외선 흡수량을 감소시킬 수 있을 뿐만 아니라 체내의 투명화를 가능하게 해 소비자들에게 환산 배려적인 제품을 생산한다는 것 이 질문가들의 전망이다.

나노기술을 적용한 재료로 화장품을 만드는 기술개발은 기존 화장품 산업분야에서 있어서 혁신적인 과학, 기술적 과급효과를 높고 올 전망이며, 이렇게 만들어진 나노 화장품은 막대한 경제적 과급 효과가 나타날 것으로 예측될 뿐만 아니라 화장품의 고도화에 크게 기여할 것으로 판단된다.

향후 나노기술을 적용하여 큰 과급효과를 가져올 것으로 예상되는 기술은 다음과 같다.

첫째, 생체 적합성이 높은 나노원 분자나 환경 성분을 나노 사이즈로 가용화 시켜 생체 이용률을 증진시키는 나노 소재의 개발

둘째, 캐피아드나 단백질, 유전자와 같은 거대분자의 생체 내 전달을 효율적으로
시기는 나노 전달체의 개발

♻️, 피부나 인체의 특정 부위 혹은 특정 세포와 반응하는 표적형 나노소재의 개발

넷째, 무기 과우더의 나노분산을 통한 자외선 차단능력을 극대화 시키는 나노분산 소재의 개발

다섯째, 신 재생 및 신기능을 나타내는 나노소재의 개발 등이 있다.

현재 일부는 별세 파급효과를 보고 있으면서 오히려 제품화되어 출시된 상품들도 있으며, 이미 나노기술을 접목한 화장품은 급속도로 개발되어 우리 실생활에 깊숙히 파고들고 있다.

나노입자는 크게 구성 분자성분으로 분해되는 용해성 물질 및 생명체성 나노입자(리포술, 바이크로 에일렌, 나노 에일렌 등)와 불용성 및 생체지속성 입자(TiO₂, ZnO, 폴리렌, 탄소 나노튜브, 양자점 등)로 분류될 수 있다. 반면 나노 크기에 입자는 뇌부를 통해 인체에 침투할 경우 그 입자가 인체 내에서 어떤 행동을 하는지 알 수 없기 때문에 그와 관련한 잠재적 위험을 평가해야 한다. 흡수가 관련되어 건강문제를 일으키는 것은 주로 불용성 생체 지속성 입자이다. 이 입자들이 전산에 확산되며, 전이와 이동 단계를 거쳐 제 2차 표적 기관에서의 축적이 일어날 수 있으므로 화장품의 반복사용 시 중요한 문제를 야기할 수 있다. 따라서 불용성 나노 입자의 완전한 임프사이클 분석이 필요하다.

나노기술의 중요성이 점점으로, 그 사용의 빈도가 높아짐에 따라 2004년 영국 왕립과학회와 왕립공학회는 나노과학과 나노기술에 대한 연구보고서에서 나노물질의 잠재적 위협을 지적하고, 나노물질은 신규의 화학물질로 다루어져야 하며, 경상 및 손상된 피부 모두에 대해 피부흡수 평가를 수행할 것을 권고하기도 했다. 즉 나노 크기의 입자는 빌미가기 기존 재료를 만드는 방법과는 매우 다른 방법으로 만들어지며, 기존의 재료에서 발견할 수 없는 특성을 나타내기 때문에 화장품에 사용되는 나노 입자와 관련된 잠재적 위험을 평가할 때에도 흡수평가는 매우 중요한 평가적도가 되어야만 한다는 것이다. 흡수가 관련되어 건강 문제를 일으키는 것에 대해서도 철저히 조사가 이루어져야 한다는 것이다.

이제 더 이상 나노기술은 미래의 새로운 기술이 아니다. 화장품을 비롯해 반도체, 미토리, 바이러스 연구 등 활용 분야가 매우 넓다. 특히 나노기술은 제조분야 뿐만 아니라 전자, 광학, 에너지, 우주항공, 의학 등 거의 전 산업분야에서 응용이 가능하다. 현재는 이와 같은 인식에 힘입어 각 산업분야에서는 관련된 핵심 나노기술의 개발과 효용적 이용을 위하여 각과의 노력을 기울이고 있다. 또한 정부 역시 나노기술을 핵심기술의 로드맵에 포함시키고, 기술개발을 위한 자원의 지원이나 기술정
보의 흐산에 앞장서고 있다.

공극적으로 이 기술은 인류의 미래를 추구하는 끝없는 도전에 일조할 뿐만 아니라 화장품산업에서 개발되는 나노기술이 다른 재료 공업 분야에도 전파되어 유익한 방향으로 응용될 것으로 예상된다.
제3장
특허 정보 분석

본 장에서는 나노 사이언스 또는 나노 테크놀로지가 융합된 화장품 분야의 특허들 중 2008년 8월 말까지 한국, 미국, 일본 및 유럽에서 공개되거나 등록된 특허를 대상으로 해당 특허들에 대한 소정의 기술분류를 통한 특허분석을 수행함으로써 한국의 나노 화장품 분야 특허들의 양적, 기술적 수준을 재확인하고자 한다. 한편, 나노 화장품의 내용과 법주에 화장품의 범주로 해석될 수 있는 피부 또는 모발과 관련된 일부 미용관련 특허들도 포함시켰다.

1. 특허 정보 분석의 목적

연구 및 개발에 앞서 정확하고 효율적인 연구계획의 중요성에 대한 인식은 더욱 높아 가고 있다. 정확하고 효율적인 연구계획을 위해서는 목표수립, 명확한 연구 자금의 흐름, 사업화 계획 등 많은 조건들이 충족되어야 하지만, 그 중에서도 해당 분야의 선행기술 조사라는 연구계획의 성패를 가름 지을 수 있는 중요한 인자 중의 하나이다.

선행기술 조사를 위해서 대부분의 연구자 혹은 기획자들은 지금까지 학술 논문에 의존하는 경향을 보여 왔다. 학술 논문만을 이용한 선행기술 조사의 높은 의존도로 인하여 학술 논문의 학문적, 기술적인 가치가 동일하게 인식되어 왔으며, 동시에 법적 권리까지 내재되어 있는 특허의 중요성을 상대적으로 소홀히 취급하게 만들어 온 것은 사실이다. 그러나 연구 기획이 연구에 그치는 것이 아니라, 이를 발전시켜 사업화를 통한 이익 창출의 단계까지 발전하기 위해서는 단순히 기술의 발전 경도를 조사하는 학술 논문에 의한 선행기술 조사만으로는 한계가 있다. 또한 연구 기획이 사업화 또는 이익 창출에 이용될 필요는 없지만, 적어도 많은 인력과 자금을 필요로 하는 연구 결과를 사업화나 이익 창출의 기회로 사용하기 위해서는 학술 논문뿐만 아니라, 법적 권리를 확인할 수 있는 특허 정보를 이용한 선행기술의 조사가 이루어져야 할 것이다.

특허 정보를 분석하는 기본적인 목적은 축적된 특허 정보로부터 기술의 개발동
항 및 현황을 파악하여 분석 대상 기술 분야에 있어서의 기술의 발전 과정과 현재의 기술 개발 상황을 알아보고, 나아가 향후의 기술 개발 방향을 정립하는데 있을 것이다. 다시 말해서, 축적된 특허 정보 데이터를 종합적이고 체계적으로 정밀 분석하여 연구 개발의 중복투자를 방지하고, 향후의 기술 경쟁력을 확보하고, 각종 특허 분쟁에 대비한 대응능력을 제고하는데 그 목적이 있다고 할 것이다.

특허를 이용한 정보 분석의 장점은 다양한 데이터베이스로부터 정보의 수집 및 입수가 용이하며, 체계적으로 통일된 분류와 기계양식을 사용하고 있으며, 기술의 내용이 매우 구체적이라는 점 등이며, 단점으로는 시의성 및 과학적 성과의 반영이 부족하며, 출원인에 의한 특허 출원 성향의 차이에서 발생할 수 있는 분석 자료의 왜곡 등을 들 수 있다. 이런 나노 화장품의 특허 분석에서는 주요 국가의 특허청에 공개되거나 동록된 해당 특허를 기술 분류에 따라 분석하여 현재 우리의 기술 수준 정도를 평가해 보았다.

2. 분석방법

가. 분석범위

본 분석을 위하여 분석의 대상이 되는 특허로서 <표 3-1>에 기재된 바와 같이 1980.01 ~ 2008.08까지 공개 또는 동록된 한국, 미국, 일본 및 유럽의 공개특허 및 동록특허로 설정하였다. 다만, 공개 및 동록을 통하여 중복된 특허들은 동록된 특허만을 분석 대상으로 함으로써, 분석의 신뢰성을 향상시켰다.

<table>
<thead>
<tr>
<th>구분</th>
<th>국가</th>
<th>분석구간</th>
</tr>
</thead>
<tbody>
<tr>
<td>공개특허</td>
<td>한국</td>
<td>1980.01 ~ 2008.08</td>
</tr>
<tr>
<td>(공개일 기준)</td>
<td>미국</td>
<td>1980.01 ~ 2008.08</td>
</tr>
<tr>
<td></td>
<td>일본</td>
<td>1980.01 ~ 2008.08</td>
</tr>
<tr>
<td></td>
<td>유럽</td>
<td>1980.01 ~ 2008.08</td>
</tr>
<tr>
<td>동록특허</td>
<td>한국</td>
<td>1980.01 ~ 2008.08</td>
</tr>
<tr>
<td>(동록일 기준)</td>
<td>미국</td>
<td>1980.01 ~ 2008.08</td>
</tr>
<tr>
<td></td>
<td>일본</td>
<td>1980.01 ~ 2008.08</td>
</tr>
<tr>
<td></td>
<td>유럽</td>
<td>1980.01 ~ 2008.08</td>
</tr>
</tbody>
</table>
나. 기술의 분류

나노 화장품과 관련된 특허의 효율적인 분석을 위하여 나노 화장품과 관련된 기술을 《표 3-2》와 같이 분류하였다. 기술 분류는 총 2단계로 이루어졌으며 하기 기술 분류 체계에는 주출된 데이터 중 약 100건의 데이터에 대하여 우선적인 샘플 분류를 수행함으로써 결정되었다.

《표 3-2》 나노 화장품 관련 특허분석을 위한 기술 분류

<table>
<thead>
<tr>
<th>중분류 (용도적 관점)</th>
<th>소분류(공통) (제료적 관점)</th>
<th>기술 분류 설명(중분류)</th>
</tr>
</thead>
<tbody>
<tr>
<td>광차단 화장품</td>
<td>UV 차단제 등의 태양광 차단 기능을 수행하는 것의 주목적으로 하는 화장품 기술</td>
<td></td>
</tr>
<tr>
<td>보반기능성 화장품</td>
<td>두피, 모발 등 해어 관련된 목적을 주로 갖는 화장품 기술</td>
<td></td>
</tr>
<tr>
<td>생체전화/첨무성 화장품</td>
<td>피부 점무, 생체 타겟 특이성, 생체 전화력을 향상시키는 것을 주목적으로 하는 화장품 기술</td>
<td></td>
</tr>
<tr>
<td>색조/착색/미백 화장품</td>
<td>주로 피부 색상 개선을 주목적으로 하는 화장품 기술로서 “tanning” 관련 화장품도 동 법주에 포함시킴</td>
<td></td>
</tr>
<tr>
<td>노화방지 화장품</td>
<td>주름 개선 등 노화 방지를 주목적으로 하는 화장품 기술</td>
<td></td>
</tr>
<tr>
<td>항료화장품</td>
<td>항수, deodorant 등의 후각 효과를 주목적으로 하는 화장품 기술</td>
<td></td>
</tr>
<tr>
<td>범용 화장품</td>
<td>화장품에 사용할 수 있는 특적이 없어서 포함된 범용 화장품 기술로서 용도가 특화되지 않은 화장품 기술</td>
<td></td>
</tr>
</tbody>
</table>

다. 분석대상 특허의 추출

<표 3-2>에 제시된 기술 분류에 따라 적절한 키워드들 정한 후, WIPS®의 database를 사용하여 <표 3-1>에 제시된 구간에 해당하는 특허들을 미국, 일본, 유럽 및 한국에 한정하여 추출하였다. 추출된 데이터들은 <그림 3-1>에 제시된 순서에 따라 초록 및 청구항들을 비교 검토한 후, 나노 화장품 기술과 무관한 노이즈들을 제거하고 분석의 목적에 맞게 정비된 후 분석에 사용되었다.

<그림 3-1> 특허분석 데이터베이스 구축과정
3. 특허 분석

가. 국가별 연도별 출원 동향

(1) 국가별 특허 출원 동향

나노 화장품 관련 특허의 국가별 특허 현황을 조사한 결과 미국이 총 204건으로 1위, 유럽이 총 128건으로 2위, 한국이 총 123건으로 3위, 일본이 60건으로 4위의 점유율을 나타내었다.

![나노 화장품 관련 특허 현황]

<그림 3-2> 국가별 특허 보유 현황

<그림 3-2>를 참조하면, 아시아권보다는 상대적으로 미국이나 유럽에서 나노화 장품 관련 특허를 많이 보유하고 있는 것으로 나타났다. 그러나 전체 특허 보유 현황이 각국마다 다르므로 상기 분석 결과에 대한 단순 비교를 통한 유의미점을 찾는 것은 어렵다 할 것이다.
(2) 연도별 특허 출원 동향

![그림 3-3] 연도별 전체 출원 현황

<그림 3-3>을 참조하면, 전체 조사 대상 특허들의 연도별 출원 현황을 분석한 결과 전체적으로 증가 추세에 있음을 확인할 수 있다. 최근 약간의 감소 추세를 보이는 듯 하다. 장기적인 관점에서 세계적인 나노 기술의 확장 추세와 병행하여 나노기술을 접목한 나노 화장품 관련 기술 특허도 지속적으로 증가할 것으로 판단된다. 대략 90년대 초중반 이후 나노 화장품 기술이 급격히 증가한 것으로 파악되며, 이는 화장품의 기능 성능을 향상시키기 위해서 보다 기능성이 강조된 화장품에 대한 수요가 90년대 이후부터 꾸준히 증가해 오고 있는 현실에 기인한 것으로 생각된다.

각 국가의 연도별 출원 현황은 <그림 3-4>에 나타내었다. 유럽은 제외한 나머지 국가 대 출원의 현황은 전체적으로 증가 추세에 있는 것으로 파악된다.
<그림 3-4> 각 국가의 연도별 출원 현황

<그림 3-4>에서 보는 바와 같이, 한국의 경우 나노 화장품 기술 분야에서 다른 국가에 비하여 후반 주자인 반면 극적으로 증가세를 보이고 있다. 최근의 경우에는 나노 화장품 기술 관련하여 한국 출원의 양적 성장세가 다른 국가들을 앞도하고 있다고 파악된다. 이러한 분석결과는 기능성 화장품의 인기와의 관계에 대한 관심이라는 사회적 현상이 타 국가들에 비하여 상대적으로 높은 현상에 기인하는 것으로 판단하고 있다.

(3) 주요 출원인별 출원 현황

나노 화장품 기술 분야의 주요 출원인을 분석하고 그 결과를 <그림 3-5>에 나타내었다. <그림 3-5>에서 보는 바와 같이, 외국 기업인 로레알 사의 특허 출원 비율이 거의 독점적인 수준으로 많은 것으로 나타났다. 국내 회사로서는 ‘주)아모레 퍼시픽’이 주요 출원인으로 파악되었으며, 상기 ‘주)아모레 퍼시픽’은 주식회사 태평양을 포함하도록 통계적 추출을 하였음을 밝힌다.
<그림 3-5> 주요 출원인 현황

<그림 3-5>에서 보는 바와 같이 로레알 사는 특히 출원 분포 면에서 양적으로 독점적인 지위를 갖는다고 판단된다. 따라서 향후 신규 기술의 연구 및 특허 출원에 앞서 로레알 사의 특허 내용들을 벤치마킹할 필요가 있다고 판단된다.

나. 기술 분류에 따른 출원 동향

(1) IPC 분류별 출원 현황

<그림 3-6> IPC 분류별 출원 현황
<그림 3-6>의 분포를 보면, 상위 분포 1~5위까지는 모두 A61K로 분류된다. A-61K는 화장품 또는 화장품 유사 제제에 관한 것이다. 또한, B01J는 촉매, 클로이드 화학 등과 관련된 화학적 방법에 관한 분야이고, B01F는 용해, 분산, 유효 등의 화학적 혼합 방법에 관한 분야이다. A61K 이하의 서브 분류는 검토 결과 유의미하지 않다고 판단되기에, 후술할 기술 분류에 따른 분석 결과를 참조하기 바란다.

(2) 기술 분류별 출원 현황

![이미지]

<그림 3-7> 기술 분류별 출원 현황

전술한 기술분류 기준에 따라 전체 조사 대상 출원에 대한 기술분류 결과를 검토한 결과, 나노 화장품 기술 분야 관련 특허로서 범용 화장품 분야의 특허가 절반 이상을 차지하였으며, 기능의 파악이 가능한 특허들 중에는 광차단 화장품이 가장 많은 비율을 차지하고 있음을 확인할 수 있다.

상기 범용 화장품이란 나노입자를 포함하는 화장품들 중에 그 용도가 특정되지 않아서 단순히 화장품 분야에 나노 기술을 접목한다는 기술 사상의 수준에서 범용의 특정이 결정된 특허들이다. 또한, 상기 범용 화장품으로 분류된 특허들 중에는 상기 기술분류에 포함되지 않은 소정의 용도를 갖는 특허들이 소수 포함되어 있다.

또한, 용도 파악이 가능한 나노 화장품 관련 특허들 중에는 자외선 차단 등의 태양광 차단의 기능을 갖는 특허들이 가장 많았으며, 이들 특허들은 예를 들면 나
(3) 기술 분류별 연도별 출원 현황

<그림 3-8> 기술 분류별 연도별 출원 현황

<그림 3-8>을 참조하면, 범용 화장품의 경우 2000년 초반 출원 건수가 잠시 줄어들었다가 다시 증가하는 추세에 있다. 범용 화장품 기술의 경우 나노기술과 관련하여 그 용도가 세분화 되지 않은 반면 나노기술에 포커스가 맞추어진 특허들로 판단된다. 즉, 상기 범용 화장품 특허의 경우 기능적인 용도 보다는 예를 들면 나노 입자들의 콘트롤 자체에 특징이 있는 기술이라고 할 수 있었다. 즉, 범용 화장품 분야의 출원 추이는 나노기술 자체의 양적 평창과 관련이 있는 것으로 해석할 수 있다.

또한, 전술한 바와 같이 기능적 용도로서 가장 많은 비중을 차지하는 자외선 차단화장품의 경우 출원 건수가 감소하고 있는 것으로 파악되며, 이는 상기 자외선 차단 화장품 기술분야가 현시점에서는 나노 화장품 분야의 레드오션 영역으로 변화되고 있다고 해석된다.

기타의 기능성 나노 화장품의 경우 유의미한 추이 변화가 있다고 보기 어렵으나, 모바일기능성 화장품 및 생체전화/첨부생 화장품의 용도를 갖는 나노 화장품이 다소
증가되고 있는 것으로 판단된다.

(4) 1단계 분류에 대응한 세부 기술 분류별 출원 분포

<그림 3-9> 세부 기술 분류별 출원 현황

<그림 3-9>에서 보는 바와 같이, 범용 화장품에 관한 특허들 중 세부적으로는 나노 에열전에 관한 기술과 관련된 특허의 점유율이 가장 높았다. 그 다음 순으로 나노 무기물을, 나노 유기물 등의 순이었다. 여기서 나노 무기물인 나노입자와 무기물 특성을 갖는 특허에 대한 세부 기술 분류이다. 또한, 나노 에열전이나 나노 입자들을 포함하는 에열전을 형성하기 위한 방법 또는 재료 등에 관한 기술적 특성을 갖는 특허들에 대한 세부 기술 분류 기준이다. 나노 유기물인, 고분자, 저분자 및 생체 분자 등 유기물로 이루어진 나노입자 기술에 관한 특성을 포함하는 특허들에
대한 세부 기술 분류 기준이다. 또한, 나노 스피어란 나노입자 구형인 특성을 포
합하는 특허들에 대한 세부 기술 분류 기준이다. 또한, 나노 캐스프런 코어가 존재
하고 그 표면이 다른 물질로 코팅된 형태의 나노입자들에 관한 특성을 포함하는 특
허들에 대한 세부 기술 분류 기준이다. 마지막으로, 나노 일반이란 재료나 형태적
특징 보다는 나노입자를 도입한 것 자체에 의미를 부여한 특허들에 대한 세부 기술
분류 기준이다.

상기 자외선 차단 화장품의 경우 상기 그림에서 알 수 있듯이, 세부 기술 분류
상 나노 무기물을 포함하는 기술적 특성을 갖는 특허들이 대부분이었다. 예를 들면,
자외선 차단 화장품 조성물 내의 성분으로서 금속이나 금속 산화물 등을 포함하는
기술 등이 대거 확인되었다.

상기 생체전화/첨부 화장품의 경우에는, 자외선 차단 화장품과 달리 나노 유기물
을 포함하는 기술적 특성을 갖는 특허들의 점유율이 매우 높았다. 아마도 생체전화/
첨부의 경우 피부 조직과의 관계가 중요한 만큼 피부 조직에 천화적인 유기물을
나노 스케일로 포함하는 특허들이 대다수를 이루는 것으로 확인되었다.

한편, 모발기능성 화장품의 경우, 나노 유기물을 포함하는 특징 및 나노 무기물
을 포함하는 특징을 갖는 특허들이 혼재되어 있음을 확인할 수 있었다.

(5) 세부 기술별 출원분포

1단계 분류 기준을 배제하고, 2단계인 소분류별 출원 분포를 분석하고 그 결과를
<그림 3-10>에 나타내었다.
<그림 3-10> 소분류별 출원 현황

<그림 3-10>을 참조하면, 중분류에 해당하는 용도적 특징을 배제하고 나노 입자의 재료나 구조에 관한 관점에서 출원 분포를 검토한 결과, 나노 무기물에 관한 특징을 포함하는 특허의 점유율이 가장 높았으며, 뒤를 이어 나노 유기물과 나노 에멀전 관련 특허가 유사한 점유율을 나타내었다. 기타 나노 캡슐, 나노 스피어 관련 특성을 갖는 나노 화장품 특허 낮은 점유율을 나타내었다. 또한, 17%의 점유율을 차지하는 나노 일반에 해당하는 특허의 경우, 나노 입자의 재료나 구조에 관한 특징보다는 상위 개념적으로 나노입자의 도입 그 자체를 특징으로 한다.

(6) 세부 기술별 연도별 출원 분포

<그림 3-11> 세부 기술별 연도별 출원 현황
(7) 국가별 기술 분포 현황

<미국>

<유럽>
<그림 3-12> 국가별 기술 분포 현황

<그림 3-12>를 토대로 검토해 본 결과, 한국은 노화방지 화장품 기술 관련 출원의 점유율이 다른 국가에 비하여 상대적으로 높았으며, 일본은 모발기능성 화장품 기술 관련 출원의 비율이 다른 국가에 비하여 상대적으로 높은 것으로 나타났다. 또한, 일본은 색조/착색/미백 화장품 기술 관련 출원의 비율도 상대적으로 높게 나타났다.

상대적으로 미국과 유럽은 범용화장품 기술 관련 출원의 비율이 상대적으로 높게 나타났다.

상기 결과를 기초로, 유추해 볼 수 있는 점은, 한국의 경우에는 주를 개선 등 노화 방지 관련 화장품에 상대적으로 수요가 높고, 반면에 일본은 모발이나 색조 화장 관련 화장품에 상대적으로 수요가 높다고 판단된다. 한편, 미국이나 유럽 등 시
구의 기술 분야는 기능성 측면을 강조한 기술 보다는 나노 기술 자체, 즉 순수 분야의 출원 점유율이 아시아 국가에 비하여 높은 것으로 해석할 수 있었다.

(8) 주요 출원인인 로레알사의 연도별 기술 분포

로레알

생체전화/접투화장품

색조/착색/미백화장품

색조/착색/미백화장품

생물학적/화학적

화장품

<그림 3-13> 로레알 사의 연도별 기술 분포

<그림 3-13>를 참조하면, 로레알 사의 경우 2000년 이전에 왕성하게 나노 화장품 관련 기술에 대한 관리를 시도하였으나, 최근에는 다소 소강상태인 것으로 보인다. 또한, 최근에는 용도를 특정하지 않은 범용 화장품에 대한 출원 비율이 증가할 것으로 보인다.
4. 관련 특허 예시

가. 자외선 차단 화장품(나노 무기물)

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>셀프 태닝 효과를 부여한 자외선 차단 화장료 조성물 (Cosmetic compositions for UV screen having self-tanning effect)</th>
</tr>
</thead>
<tbody>
<tr>
<td>출원인</td>
<td>엔프라니 주식회사 (KR)</td>
</tr>
<tr>
<td>출원번호</td>
<td>2007-0009147 (KR)</td>
</tr>
<tr>
<td>요약</td>
<td>본 발명은 피부의 셀프 태닝 효과를 부여한 자외선 차단 화장료 조성물로서, 유중수형태의 에멀젼 형태로, 부형제에 주요 입자의 평균 크기가 50 nm 미만인 하나 이상의 산화철 나노 안료 (nanopigment)를, 중량 치커리와 김네마 추출물을 0.2 ~ 3 %, 0.8 ~ 5중량 본 발명은 적용 후 곧바로 셀프 태닝 효과가 발생하며 이러한 태닝 효과가 장기간 유지되며, 피부에 자연스러운 태닝 효과를 부여할 수 있다. 또한, 피부에 트리트먼트 효과를 주어 자연스럽고 피부결이 더욱 아름다운 셀프 태닝을 제공한다.</td>
</tr>
<tr>
<td>대표청구항</td>
<td>청구항 1항</td>
</tr>
<tr>
<td>댓글</td>
<td>본 발명은 태닝 효과를 나타냄과 동시에 자외선 차단의 기능을 수행하는 화장료 조성물에 관한 것으로서, 조성물 내에 산화철 나노 안료를 포함한다.</td>
</tr>
</tbody>
</table>

나. 생체전화/침투성 화장품(나노 캡슐)

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>나노사이즈의 화장료용 다중액정 막 캡슐 조성물과 그 제조 방법 (Cosmetic composition having the capsule structure of multiple-liquid crystalline membrane with nano size and manufacturing method thereof)</th>
</tr>
</thead>
<tbody>
<tr>
<td>출원인</td>
<td>한국콜마 주식회사 (KR)</td>
</tr>
<tr>
<td>출원번호</td>
<td>2002-0060171 (KR)</td>
</tr>
<tr>
<td>요약</td>
<td>본 발명은 나노사이즈의 화장료용 다중액정 막 캡슐 조성물과 그 제조 방법에 관한 것으로, 더욱 상세하게는 유상부와 갤화제부를 사용하여 라멜라 형태의 다중액정막 젤 페이지스트를 만들고, 여기에 생리활성물질을 투입하여 생리활성물질이 캡슐화된 라멜라 형태의 다중액정 젤 페이지스트를 얻으며, 이를 수상부와 혼합 교반하여 1차 유화시키며 구상의 다중액정막 캡슐을 얻고, 라인형(line type) 초고속 미립자 분쇄기에 투입하여 2차 유화시켜 나노사이즈의 다중액정막 캡슐 구조를 갖는 화장료 조성물을 제조함으로써, 센서, 및, 열, 공기와 같은 외부 환경에 의한 생리활성물질을 화장료에 안정하게 포함시켜 피부로의 침투를 수수하게 하며 사용효과의 지속성을 유발시키고, 또한 피부의 지질 간극보다 작은 나노사이즈의 캡슐들이 효과적으로 피부에 빠르게 침투하여 생리활성물질에 의한 효과를 높일 수 있는 나노사이즈의 화장료용 다중액정막 캡슐 조성물과 그 제조 방법에 관한 것이다.</td>
</tr>
<tr>
<td>대표청구항</td>
<td>청구항 1항</td>
</tr>
</tbody>
</table>
다. 모발 기능성 화장품(나노 유기물)

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>COMPOSITION FOR HAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>출원인</td>
<td>FUJIFILM Corporation (JP)</td>
</tr>
<tr>
<td>출원번호</td>
<td>2008-018973 (US)</td>
</tr>
</tbody>
</table>

요약

- 본 발명은 피부 침투력 증가를 위하여 나노 사이즈의 액정막 캡슐 조성물에 관한 것이다.

대표청구항

1. A composition for hair which comprises protein nanoparticles containing an active ingredient for hair.

COMMENT

본 발명은 모발 활성 성분을 포함하는 단백질 나노 입자를 모발용 조성물에 관한 것이다. 캡슐을 나노 사이즈로 구성한 특성을 갖는다.

라. 노화방지 기능성 화장품(나노 캡슐)

<table>
<thead>
<tr>
<th>발명의 명칭</th>
<th>이데베논 나노캡슐을 함유하는 주름개선 화장료 조성물 및 이의 제조 방법 (Anti-wrinkle cosmetic composition encapsulating idebenone with nano sizes and its manufacturing method)</th>
</tr>
</thead>
<tbody>
<tr>
<td>출원인</td>
<td>FUJIFILM Corporation (JP)</td>
</tr>
<tr>
<td>출원번호</td>
<td>2006-0047328 (KR)</td>
</tr>
</tbody>
</table>

요약

본 발명은 이데베논 나노캡슐을 함유하는 주름개선 화장료 조성물 및 이의 제조 방법을 특징으로 한다.
물 및 이의 제조방법에 관한 것으로, (a) 이데베논은 0.01~2.0 중량% 및 에스테르계 극성오일 1.0~15.0 중량 (b) 상기 코어부 상에 비극성 오일 2.0~20.0 중량%, 폴리올 2.0~20.0 중량%, 세라마이드 0.01~1.5 중량%, 콜레스테롤 0.01~1.5 중량%, 지방산 0.01~3.0 중량%, 고급 알코올 0.01~3.0 중량% 및 인지질 0.5~6.0 중량 (c) 상기 내캡슐부 상에 음이온성 인화합물 0.01~1.0 중량% 및 고분자 유화제 0.1~5.0 중량 및 (d) 전량으로서 상기 (a)의 코어부, (b)의 내캡슐부 및 (c)의 외캡슐부 내에 물을 포함하여 이루어지는 이데베논 나노캡슐을 함유하는 주름개선 화장료 조성물 및 이의 제조방법을 제공함으로써, 장기간 이데베논의 역가를 안정시키면서 피부에 대한 이데베논의 주름개선 효율을 향상시킬 수 있는 나노사이즈의 주름개선 화장료 조성물을 제공할 수 있게 한 것이다.

대표청구항

청구항 1항 (a) 이데베논은 0.01~2.0 중량% 및 클리세릴 트리오ク타노에이트, 옥틸도데실미리스태르트, 이소스테아릴이소스테아레이트, 미크로.glob이나 타타이, 카프릭/카프릴 트리클로로해판, 이소프로필말마이트, 이소프로필미리스테이트 및 옥틸말마이트로 이루어진 군에서 선택된 에스테르계 극성오일 1.0~15.0 중량 (b) 상기 코어부 상에 동식물성 스쿠알란, 미네랄오일, 이소핵산 대란, 수염물리오소부전 및 수염물리데센로 이루어진 군에서 선택된 비극성 오일 2.0~20.0 중량%, 폴리올 2.0~20.0 중량%, 세라마이드 0.01~1.5 중량%, 콜레스테롤 0.01~1.5 중량%, 지방산 0.01~3.0 중량%, 세타올, 세토스테아릴알콜, 스테아릴알콜, 베탈알콜 및 비탈알코로 이루어진 군에서 선택된 고급알코올 0.01~3.0 중량% 및 인지질 0.5~6.0 중량 (c) 상기 내캡슐부 상에 세라마이드, 디이에이세틸포스페이트, 디세틸포스페이트 및 포타슘세틸포스페이트로 이루어진 군에서 선택된 음이온성 인화합물 0.01~1.0 중량% 및 고분자 유화제 0.1~5.0 중량 및 (d) 상기 (a)의 코어부, (b)의 내캡슐부 및 (c)의 외캡슐부 내에 전량으로서 물을 포함하여 이루어지는 이데베논 나노캡슐을 함유하는 주름개선 화장료 조성물.

COMMENT

본 발명은 아데바논나노 자를 코어 성분으로 하고, 표면에 비극성 오일을 코팅함으로써 이루어지는 나노캡슐을 포함하는 주름개선 화장료 조성물에 관한 것이다.

마. 색조/착색/미백 화장품(나노 일반)

발명의 명칭	Changing skin–color perception using quantum and optical principles in cosmetic preparations
출원인	-
출원번호	2007-656738 (US)
요약	The present invention teaches how to change the skin color perception, mainly the facial color from red, blue or yellow to white appearance, using quantum and optical principles. By selecting the right size and material of particles compounded in cosmetic preparations and applying the preparations to the skin, the scattering and/or emission from micro- and nanoparticles can provide a complementary color or in proximity to that complementary color of the skin color. The mixture of the color provided by the particles and the
reflected color from the skin will whiten the skin or make
inconspicuous of the hyperchromic portion of the skin. The
invention can also be used for other applications in which
the particles can be applied to a surface or blended into a
material, such as, for example, automobile paint, house
paint, glass color and nail polish.

| 대표청구항 | 1. A method of changing the skin color perception
comprising the steps of: establishing a first color
corresponding to a normal-skin color; determining a second
perceived skin color desired to be attained; blending into a
cosmetic composition to be applied to the skin particles
selected from the group consisting of micro-particles and
nanoparticles having properties selected to provide a third
color which when combined with said first color generates
the perception that the skin color corresponds to the second
color. |

| COMMENT | 본 발명은 양자 및 광학적 성질에 의하여 피부 색상을 변화시키는 방법에 관한 것으로서. |

마. 향료 화장품(나노 일반)

발명의 명칭	FRAGRANCE COMPOSITIONS
총원인	THE PROCTER & GAMBLE COMPANY (US)
출원번호	01948260 (EP)
요약	-

| 대표청구항 | A cosmetic fragrance composition comprising: (a) from
0.01% by weight, of a fragrance oil, wherein the fragrance
oil comprises from 25% to 60 (b) an entrapment material
which is selected from the group consisting of polymers:
capsules, microcapsules and nanocapsules; liposomes;
pro-perfumes selected from more than 1 type of
pro-chemistry; film formers; absorbents; cyclic
oligosaccharides and mixtures thereof; (c) greater than 50%
ethanol. |

| COMMENT | 본 발명은 나노 캡슐을 포함하는 향료 조성물에 관한 것이다. |

5. 특허분석 결과

나노 화장품 분야의 특허는 크게 두 가지로 분류될 수 있다. 하나는 화장품에 적용될 수 있다는 정도 외의 세부 용도를 특정하지 않고 나노 기술에 초점을 두는 특허
이와 다른 하나는 세부 용도를 특정한 특허이다. 종래에 나노 화장품 관련한 특허들에 개시된 용도로서는, 크게 자외선 차단 화장품, 모반 기능성 화장품, 색조/착색/미백 관련 화장품, 노화방지 화장품, 생체친화/침투성 화장품, 향로 화장품 등으로 구분될 수 있다.

급번 특허 분석 결과, 나노 무기 입자를 주로 포함하는 자외선 차단 화장품 등은 해당 기술 분야의 레드오션으로 판단된다. 또한, 상기 구분 지어진 분야 외의 신규 용도를 구준히 개발해야 할 필요성이 있다고 판단된다.

또한, 범용 화장품이더라도 나노 기술 자체에 초점을 맞춘다면 화장품 분야에서 여전히 특허 가능한 많은 기술 영역이 존재할 수 있다고 판단된다.
제4장

나노 화장품의 위험성

최근 화장품에 나노제료의 사용에 대한 우려가 제기되고 있는 가운데, EC 소비자 제품과학위원회(SCCP, Scientific Committee on Consumer Products)는 이에 대한 견해를 요청받고, 이들 나노제료 화장품 성분의 안전성 평가에 대한 위원회의 의견을 수렴하여 “Opinion on Safety of Nanomaterials in Cosmetic Products”(2007년 12월 18일)라는 보고서를 발표하였다. 본장에서는 이 보고서의 내용을 소개하고자 한다.

1. 배경

나노기술의 중요성이 점치함에 따라 2004년 영국 왕립협회(the Royal Society)와 왕립공학회(The Royal Academy of Engineering)는 나노과학과 나노기술에 대한 연구보고서를 발표하고, 위험성의 관점에서 나노물질은 신규의 화학물질로 당연히야 하며, 정상 및 비정상(손상된) 피부에 대해 피부흡수 평가를 수행할 것을 권고하고 있다.

나노제료는 표면적이 증가로 단위 질량당 보다 큰 독성을 유발할 수 있기 때문에 질량에 기반한 종래의 노출 평가는 나노제료에 대해서는 더 이상 적합하지 않다고 주장하고 있다.

이러한 배경에서 유럽 소비자제품과학위원회(SCCP)는 화장품용 나노제료의 안전성 평가에 대한 견해를 요청받고, 2007년 12월 18일 이에 대한 대응책을 보고서 (“Opinion on Safety of Nanomaterials in Cosmetic Products” (SCCP/1147/07))로 발표하였다. SCCP는 보고서에서 현재 자유선 차단제에 사용되고 있는 나노제료(물용성 나노입자)에 대한 이전의 견해들이 수정될 필요가 있으며, 이들에 대한 안전성의 검토가 요구된다고 밝히고 있다.

2. 나노입자와 화장품

화장품은 주로 피부, 머리카락, 또는 구강 점막에 사용되는 제품으로, 이러한 제
품은 소위 나노입자라 부르는 100 nm 이하의 크기를 갖는 입자상 물질을 함유할 수 있다. 나노입자는 여러 가지 목적으로 확장품에 사용되는데, 예컨대 확장품의 배합 물성과 수용성(acceptability)을 향상시킴으로써 보습 및 노화방지 조성물, 메이 커핑 및 헤어 컨디셔너처럼 피부와 머리카락에 직접적인 효과를 주거나, 외부선 차 단체의 UV 펄러처림 피부를 보호하는 역할을 한다.

나노입자는 하나 이상의 나노크기 차원(적어도 하나의 차원이 100 nm 이하)을 갖는 입자를 말하며, 또 나노제료는 하나 이상의 나노크기의 외부 형상 또는 내부 구조를 갖는 재료를 말한다. 이러한 나노재료는 나노크기의 형상이 없는 동일 재료에 비해 신규한 특성을 나타내며, 상대 표면적 증가, 양자 효과 등을 이용하여 나노 재료의 물성을 동일한 별크재료와는 매우 다르게 만든다.

나노입자는 두 개의 군으로 분류될 수 있는데, 즉 ①피부에 적용시 구성 분자 성분으로 분해되는 용해성 및/또는 생분해성 나노입자(liposome, 마이크로 에멀전, 나노 에멀전 등)와 ②불용성 및/또는 생체지속성(biopersistent) 입자 (TiO₂, ZnO, 플러멘, 탄소나노튜브, 양자점 등)로 분류될 수 있다.

용해성 및/또는 생분해성 그룹에 대해서는 질량에 기초한 기존의 리스크 평가 방법이 적용될 수 있으나, 불용성 입자에 대해서는 입자크기, 입자수, 형상, 표면적, 입자분포 등의 다른 측정 기준이 요구된다. 따라서 물리화학적 특성에 대한 완벽한 특성연구가 요구된다. 국토교통부 용해에 있어 나노입자에 대한 노출은 근본적으로 모낭 및 부속기관을 통하거나 피부를 통해서 이루어지며, 호흡, 점막, 점막 및 점막 표면을 통해서도 노출되기도 한다.

나노입자와 관련한 임상적 위험을 평가할 때 흡수(uptake)는 매우 중요하며, 흡수와 관련한 건강 문제를 일으키는 것은 주로 불용성 입자 때문이다. 이 입자들이 체질에 확산되면, 전위(translocation)와 수송 및 제2차 표적 기관에서의 궁극적인 축적이 일어날 수 있다. 이는 화장품의 반복 사용 시에도 중요한 문제가 될 수 있기 때문에, 불용성 나노입자는 폐면적으로 환경에 부하가 되므로 완전한 라이프 사이클 분석이 요구된다.

3. 나노제료의 리스크 평가

나노제료의 안전성 평가에 있어, 실제 관리되거나 관리하려는 나노재료가 재료 특성연구와 위해성 규명에 사용되어야 한다. 전통적인 리스크 평가에 있어, 피부 천부에 대한 연구는 건강하고 손상되지 않은 피부를 사용하여 수행되고 있으며, 손상된 피부의 경우에는 흡수량의 증가 가능성을 고려해 안전한계(Margin of Safety,
2) 의 화장품 동물실험 금지로는 동물보호단체들의 끊임없는 주장으로 년 월 일 화장품 지침EU 2003 2 27 EU
이 수정 되면서 시작됐다. 수정지침의 핵심골자는 동물실험 금지와 동물실험 화장품의 판매금지이다. 이 지침에 따라 년 월 일부터 에서 화장품 완제품에 대한 동물실험 금지됐. 2004 9 11 EU
특히 오는 년 월 일부터는 개 분야. 2009 3 11 3 (repeated-dose toxicitiy, reproductive toxicitiy,
을 제외하고는 화장품의 성분 또는 조제) (ingredients, combinations of ingredients)

4. 리스크 평가를 위한 나노입자의 특성 연구

리스크 평가를 위한 나노입자의 특성 연구에는 다음과 같은 물리적, 화학적 특성들이 고려되어야 한다. 또 나노입자 자체의 물성에 대한 특성 연구만으로는 부적분하며, 주어진 환경 중에서 융해성/불융성, 자유양리성, 생생성 등 나노입자의 상호작용이 검토되어야 한다.

표 4-1 나노입자의 물리, 화학적 특성

(formulation)에 대한 동물실험이 금지된다. 이는 EU 내에서 유효성이 인정된 동물실험의 대체방법이 없더라도 화장품에 대한 대부분의 동물실험이 완전히 금지된다는 것을 의미한다. 또한 2013년부터는 나노 입자에 대해서도 동물실험을 받은 화장품이나 성분의 판매가 금지된다. 이 같은 조치는 EU 지역내 생산품과 수입품 등 모든 화장품에 적용된다.(Cosmetic Mania News 2008-02-21)
물리적 특성
- 크기
- 형상(예, 구형 또는 섬유상)
- 표면적
- 표면 형태
- 유효하
- 다공도
- 결정도 및 무정형도
- 일차 입자, 입자 응집체

화학적 특성
- 화학 조성
- 산화 능력
- 화학 반응
- 표면화학
- 표면 촘촘도 및 속도
5. 나노입자 노출에 대한 SCCP의 관해

가. 피부노출

기능화된 폴리 difficoltà 알바적으로 입지(10nm 이하)가 피부를 통해 생체조직에 침투한다는 몇 가지 증거가 있다. 주로 표피층(epidermal layer)의 유극층(startum spinosum)에 침투하며 궁극적으로 진피(dermis)에 도달한다.

손상되지 않은 피부에 대한 침투 실험에서, 물리적인 UV 필터로서 자외선 차단제에 사용되는 약 20 nm 이상의 입자 입자에 대해서는 생체조직의 피부침투에 대한 결정적인 증거는 없다.

위의 피부침투에 관한 사실은 건강한 피부(인간, 돼지)에 적용되며, 손상된 장애 기능을 갖는 피부(아토피성 피부나 햄찌에 단 피부)에 대해서는 적절한 정보가 없다. 건선피부에 대해서는 소수의 데이터가 있다. 피부에 대한 구부러 등의 몇 가지 기계적인 영향은 나노입자 침투에 영향을 미칠 수 있다는 증거가 있다.

20 nm 미만의 입자에 대해서는 부속기관들의 침투에 대한 정보는 없으며, 20 nm 이상의 나노입자는 머리카락 모낭 깊숙이 침투하지만 생체조직에 대한 침투는 관찰되지 않았다.

나. 나노입자의 흡입

- 흡입 시에 10~100 nm 크기의 나노입자는 기도의 폐포 부분에 우선적으로 침착하며, 또 0.2~0.6의 확률로 미세동맥, 미세동맥의 침착한다. 이에 비해 10 nm 미만의 나노입자는 상부 기도에 우선적으로 침착한다.
- 나노입자는 상피 장벽을 지나 세포간 공간으로 들어간다.
- 흡입 및 점착주입(instillation) 후 나노입자의 전위 연구가 수행되었으며, 이로 부터 나노입자가 여러 기관으로 이동하며, 내혈관장벽(blood-brain barrier)을 통과할 수 있는 것으로 나타났다.
- 국기세 입자의 흡입은 혈전효과(thrombotic effect)와 관련이 있으며, 이는 흡입의 직접적인 효과이거나 화학증에 기인한다.
- 폐에서 나노입자는 대식세포(大食細胞)의 세포력 활성 저하, 폐포로부터 분리가 어려움, 세포간 공간(interstitium)에서의 세포 등의 이유로 오래 지속할 수 있다.
- 폐에서의 잠재적 국소 효과는 입자체계 또는 세포 및 세포조직 세포에 의해
유발되는 산화 스트레스, 염증반응, 배양된 세포에서 인공물연변이/유전독성
효과의 증가는 있지만, 흡입 노출 후 나노제료의 유전독성에 관한 데이터는
없다.

다. 세포에 대한 영향

나노입자의 세포 반응을 연구하기 위해 다양한 파부 세포들에 대한 생체외 실험
이 수행되었으며, 관찰된 결과는 세포내 이입 및 비세포내 이입 페커니즘에 의한
내재화(internalization)에서 세포내부의 결핍 및 반응성 산소 중 농도 증가, 세포 중
심 및 세포 생존력의 영향에 이르기까지 다양하다.

생체외 시험이 오해가 규명에 유용하지만, 나노입자를 사용해 검증 또는 최적화
된 다른 대안적 방법이 존재하지 않는다. 나노입자는 세포 배양액에서 환경(배양액,
이온강도, 산성, 점성)과 입자물성(크기, 형상, 및 밀도)의 함수로서 확산,침전,응집
이 있다. 이들 물성과 효과를 고려하면 나노입자의 독성 시험의 기반을 상당히 향
상 시킬 수 있을 것이다. 현재 적절한 리스크 평가를 위한 생체외 분석법은 없다.

이런 기술이든 새로운 떼오르는 기술은 인간의 건강과 환경에 예기치 못한 해로운
결과나 다른 사회적 문제를 야기시킬 수 있는 가능성을 가지고 있다. 현존하는
기술의 규제가 나노기술에 바탕을 둔 제품에도 적용되는 점에 주목하고 있으며, 이
러한 제품을 제조, 판매하는 업체는 제품과 공정의 안전성에 대한 책임을 지어야 한
다. 따라서 나노기술에 대한 환경, 건강 및 안전관련 연구는 응용과 위험에 대한 연
구가 서로 유의되지 않도록 긴밀한 협조를 통해 이루어져야 한다. 특히 지금의 나
노기술처럼 개발과 위험에 대한 평가연구가 동시에 수행되는 경우에는 더욱 긴밀한
협조가 필요하다. NNI(National Nanotechnology Initiative, 나노기술개발전략)에서는 나
노제료의 성질과 그 제료가 갖고 있는 위험 및 이의 요인 분석에 대한 정보를 모든
사람이 이용할 수 있도록 공개하는 데 앞장 서야 할 것이다.3)

3) 국가나노기술자문위원회(NNAP, National Nanotechnology Advisory Panel)
시장 분석

1. 시장 개요

머리카락의 8만분의 1 크기의 분자 성분을 이용한 나노미터(10억분의 1m) 크기의 초미세 세계에서 분자나 원자를 조작하고 가공해 물질의 구조 및 성질을 제어하고, 이를 통해 새로운 기능이나 특성을 발현시키는 기술을 총칭하여 나노 기술이라고 한다. 이러한 나노기술을 응용해서 만든 화장품을 총칭하여 나노 화장품이라고 한다. 즉 나노 화장품은 입자의 크기를 작게 만들어 기존 제품의 성능을 높이는 것이 핵심이다.

나노기술은 2000년 이후 급속히 발전하기 시작하였는데, 최근 1년 동안에만 나노기술이 적용되어 개발된 생활용품들의 숫자가 2배나 증가한 것으로 나타났다. 생활용품들 중에서도 특히 화장품 분야가 가장 활발한 양상을 보여주는 미국의 우드로 윌슨센터의 조사 자료(2007년 5월)에서 나타나듯이 나노기술의 핵심 응용부위는 나노 화장품이라는 것을 알 수 있다.

2. 시장 변위 및 특징

나노 화장품 시장은 주로 일반 화장품에 비하여 기능성 화장품이 주류를 이루고 있다. 기능성 화장품으로는 피부의 세포층을 선택적으로 통과할 수 있는 나노 전달체를 만들어 흡수가 잘되어 효과를 발휘할 수 있도록 만들어진 미백이나 주름 기능성 화장품들이 대표적이다. 노벨 화학상 수상자인 리처드 스몰리의 벅민스터 풀러렌 탄소의 유도체인 나노크기의 풀러렌 C-60을 혼합하여 만든 항산화 크림 제품은 Forbes가 발표한 2005년 나노제품 Top 10에 들어 있는데, 이 물질은 탁월한 항산화 특성을 갖는 것으로 알려졌다.

또한 입자의 크기를 조절하고 서로 다른 입자들을 혼합하여 피부의 표면을 평평하게 도포함으로써 자외선으로부터의 노출을 최소화하여 자외선 차단 기능성 화장품들도 많은 부분을 차지하고 있다. 그 외 나노 소재를
함유한 은나노 화장품, 나노섬유 함유 화장품, 나노 세라믹 화장품 등 많은 종류의
나노 화장품들도 출시되어 있다.

이러한 나노기술은 기초화장품의 카테고리뿐만 아니라 헤어 케어 및 메이크업
화장품에도 적용이 되는데, 예를 들어 나노입자로 만든 액체, 젤로 나노화하여 사용하는
 llama. 무기성 분말로서 드립, 실크, 음식, 의료용품, 낙뢰방지, 항균등의 기능을 지닌
나노 화장품도 출시되어 있다.

이러한 나노기술은 기초화장품의 카테고리뿐만 아니라 헤어 케어 및 메이크업
화장품에도 적용이 되는데, 예를 들어 나노입자로 만든 액체, 젤로 나노화하여 사용하는
그리고 나노 화장품을 쓴다고 대답할 정도이다. 나노 화장품에 대한 유해성 논란은 나노 크기의 자외선 차단용 미세 분말과 나노 전달체 구성 성분에 대하여 제기되고 있는데, 특히 자외선 차단용 자외선 차단체
에 함유된 산화아연이나 이산화티타늄 미세 분말에 대한 연구 결과들이 주류를 이루고 있다. 이러한 주장의 정리해 보면, 산화아연 같은 물질들은 인체에 안전한 것으로 알려져 있기는 하지만 나노입자가 되면서 반응성이 향상되면 안전성을 면밀할 수 없다는 것이다. 나노 산화아연이 되었을 때 신경세포 손상의 위험이 제기된 TiO2 등의 무기염료 성분의 경우 우리나라에서는 배합한도를 25% 이하로
규정하고 있다. 반면 일부 연구자들은 기존 자외선 차단물질을 나노 전달체에 포집하여, 광학 안전성을 높임으로써 알러지 유발 물질의 발생을 감소시키고, 입자가 작아짐으로 인한 자외선 차단 효과도 증가함을 입증하기도 한다.

나노 전달체의 유해성에 대한 논란은 나노 전달체에 사용되는 합성 고분자
PMMA나 PLGA, PLA가 인체에 흡수되었을 때 발생할 수 있는 문제들에 대한
것이다. 유해성을 부정하는 입장에서는 나노 전달체로 사용되는 고분자 성분들은
인체에 흡수되면 혈관과 접촉할 기회가 주어지지 않고 피부 각질 부위에서
분해되기 때문에 인체에 미치는 영향이 거의 없다고 주장한다. 나노 전달체로
사용되는 또 다른 성분으로는 피부를 구성하고 있는 세라미드나 지질류가 있다.
이러한 물질로 만들어진 구조체는 생체 조직으로부터의 리포호흡이나 다중막
구조의 상용화음을 형성하는데 이러한 나노 화장품은 생체와 가장 많이 닮은
화장품이라고도 말할 수 있다.
나노화장품에 대한 여러 가지 상반된 결과들은 우리에게 나노기술을 적응한 나노화장품을 사용하지 말라는 것이 아니라, 확실히 밝혀지지 않았지만 혹시 존재할 수 있는 부작용의 일부 가능성에도 충분히 주의를 기울여야 한다는 의미로 받아 들여야 할 것이다.

3. 주요 업체 분석

가. 아모레퍼시픽

나. 한국 콜마

세계 최초로 개발해 국제화학회에서 발행한 ‘이데베논 나노캡슐(특허0785484)’ 신기술과 ‘천유성 나노 농축캡슐(특허0778946)’, ‘천수성 나노 농축캡슐(특허0778903)’ 등 나노기술 특허 등 다수의 특허를 보유하고 있다. 이데베논 나노캡슐 신기술은 네덜란드에서 열린 국제화장품과학자학회에서 발표해 인정받은 기술로 이데베논 캡슐 성분이 레티놀보다도 항노화 기능이 탁월하고 피부 흡수율이 매우 뛰어나며 그 적용범위가 점도가 높은 크림 타입의 화장품부터 색조화장품, 기능성 화장품까지 응용할 수 있다. 한국콜마가 세계적으로 인정받은 나노캡슐링 신기술을 바탕해 고농축 나노 신기술을 이용한 나노화장품 개발이 기대된다.
다. 샤넬 가

프랑스 샤넬 사는 첨단 나노기술을 접목한 화장품으로 아시아 스킨케어시장 공략을 추진하고 있다. 나노기술을 접목시켜 개발한 페이셜 로션 제품들을 일본시장에 선보였으며, 샤넬이 발매 중인 ‘프레시지옹’(Precision) 스페셜리스트 스킨케어 라인의 제품 ‘나노로션’(Nanolotion)이다. ‘나노로션’은 샤넬이 일본 전역에 개설한 168개 백화점 내 매장에 공급하고 있다.

4. 국내외 시장규모

일본의 나노화장품 시장은 2005년 1.3억 달러의 시장규모로 산업화가 진행되고 있으며, 세계시장 대비 일본 시장규모는 2005년 5.3%를 차지하고 있다.

국내 나노화장품 시장규모는 2005년 9,710달러로 세계시장 대비 국내 시장의 규모는 3.8% 정도를 차지하고 있다.

5. 시장예측

STEMI Consulting (2007년 10월) 자료에 의하면 세계 나노 화장품 시장은 2010년까지는 2005년 대비 연평균 성장률 29.9%의 높은 성장세를 기록하며, 2010년 95.5억 달러 규모로 시장이 확대될 것으로 보이며, 2020년까지 연평균 7.1%의 성장률로 시장규모는 약 190억 달러에 달할 것으로 전망된다. 2002년부터 2030년까지는 연평균 성장률이 0.9%로 낮아지며 2030년 시장규모는 206억 달러의 시장규모를 형성할 것으로 예측되며, 나노화장품 시장점유율은 2010년에는 9.1%로 확대된 것으로 전망된다. 2020년과 2030년에는 각각 4.7%, 4.2%의 시장점유율을 기록할 것으로 예측된다.

일본의 나노화장품 시장은 2005년 1.3억 달러의 시장규모로 산업화가 진행되고 있으며, 2010년까지 연평균 25.6%의 성장세를 기록하며, 약 4.2억 달러의 시장규모로 확대될 것으로 예측된다.

국내 나노화장품 시장규모는 2005년 9,710달러에서 2010년 3.6억 달러로 성장하여, 국내시장의 세계 시장점유율은 2010년 3.8%수준에서 2030년 2.0% 정도
로 예상된다.

미국 매사추세츠주 웰슬리에 소재한 시장조사기관 BCC 리서치(BCC Research)에서 2008년 공개한 보고서에서는 “나노 화장품 세계시장 연평균 16% 성장” 자외선 차단제 및 항노화 제품 등에 활발히 접목된 나노기술을 이용한 이른바 ‘나노 화장품’ 시장이 안전성에 대한 일부의 우려에도 불구하고 앞으로도 꾸준한 성장세를 지속할 것이라는 전망이 나왔다.

현재 한해 6,200만 달러 정도의 규모를 형성하고 있는 나노 화장품 부문의 글로벌 시장 규모가 차후 연평균 16.6%의 성장을 지속해, 오는 2012년에 이르면 1억 5,580만 달러 수준으로 확대될 것으로 전망하고 있다. 퍼스널 케어 업계에서 나노기술이 자외선 차단제와 항노화 제품 등을 개발하는데 활발히 접목되고 있는 현실을 반영한 전망으로 사료된다.

위에서 전망한 내용들을 보면, 조사기관에 따라서 다소 수치의 차이가 있지만 나노 화장품 시장은 앞으로 꾸준하게 성장세를 지속할 것으로 판단된다.
결론

현재 기술적으로 접근 가능한 나노기술, 특별히 화장품에 적용되었거나 적용가능성으로 높은 기술은 대부분 한계상태에 도달한 것으로 여겨진다. 최근 몇년간 ‘혁신적’이라고 여겨질 만큼의 나노기술이 적용된 제품이 시장에 나타난 것이 없다는 것을 이를 중명하고 있다. 몇 가지 장치의 도입만으로 적용할 수 있는 나노기술은 이미 대중화된 지 오래되고, 점점 더 심도 있는 연구, 특히나 나노기술 자체만이 아닌 나노기술이 적용되는 대상 및 그 인접산업에 대한 고려가 요구되고 있다. 물론, 화장품이라는 제품의 특성상 의약용 제품이나 기타 제품에 비해 점단 기술의 적용이 매우 용이하기 때문에 시장의 성장은 지속되려는 예상은 가능하고 여러 매체나 조사기관에서도 이와 같은 결과를 보고하고 있다. 그러나 그 성장률에 있어서는 점차 둔화될 것으로 여겨지며, 나노입자에 대한 환경단체의 활동과 안전성에 대한 국제 표준화 작업이 완료되는 시점 이후로부터는 이의 사용이 본격적으로 규제될 것으로 예상된다.

앞서 언급한 바와 같이, 독특한 나노기술의 적용 증가율을 억제하는 것은 나노기술에 대한 환경, 인체 안전성 문제의 대두이다. 올바른 나노기술의 적용을 위해서는 안전성에 대한 연구가 반드시 행해져야 할 것이기 때문에 무조건적인 국내 시장의 확대는 건재적인 위험요소로 작용할 가능성이 있다. 따라서 중래에 화장품에 적용된 나노기술의 완화적으로의 화장품을 위한 나노기술은 다음의 두 가지 방향으로 진행될 가능성이 높다. 첫째, 체내 완전분해, 혹은 완전 무독성으로 배출되는 소재로 제조된 나노구조체 개발기술로 현재 리피드로 제조된 나노 유화입자나 리포조, 고체 리피드 입자와 같이 전연의 소재에서 유래된 것으로 제조되는 나노 기술, 둘째, 체내의 점투가 극본적으로 배재되는 나노소재로 외부표면에서 독특한 광학적 특성을 나타내는 기능을 나타내면서 체내의 점투가 불가능한 소재를 적용하는 기술이다.

향후 나노기술이 접목된 화장품의 기술을 전망하면, 첫째, 나노기술을 응용함으로써 효율성이 높고, 상승효과를 주며, 안정성의 요구가 중대되는 특이적인 기능성 화장품의 출현할 것이다. 둘째, 화장품과 제품의 경제가 사라지고, 기능성 화장품 범위가 아토피, 여드름 치료 및 예방까지 확대될 것이며, 단기간에 효과가 있는 생리
학적 측면이 강화되는 나노기술이 접목된 화장품의 개발이 이루어질 것이다. 셋째, 건강과 자신감을 가질 수 있는 삶의 질 향상 차원의 화장품 개발이 기대된다.
참고문헌

2. 과학기술부, 해외화학기업의 나노기술 개발동향, 2005.
5. 김병근, 박현진, "나노기술의 동향과 전망", 식품과학과 산업, 2002년 12월호 특집
10. 나노위클리 210호 2006.
16. 사이언스 음, "과학 보고서 나노과학을 바탕으로 하는 나노화장품", 나노과학기술여행
18. 사이엔지 워크 쿼: 최학규-한국과학기술인연합 운영위원
22. 아모레퍼시픽, 화장품 계형 개발에서의 최신 관심 사항
23. 아모레퍼시픽 기술연구원 화장품연구소, 모발용 화장품
27. 장의섭, "화장품산업의 연구동향", 보건산업기술대전, 2003
28. 정혜순 외, 한국화장품, 한국과학기술정보연구원, 2008
29. 조병기 외, 세라마이드를 구성성분으로 하는 나노립포슬의 응용-화장품에서의
 자극완화제, 생명과학회지, Vol. 15, No.2, 2005
31. 한국화학연구원, "외부노화 방지용 방출제어 나노 hộp슬의 개발(II)", 과학기술부
 기능성 화학물질 개발사업 연구보고서, 2003.
32. 한국과학기술정보연구원, 나노소재기술개발 사업단, "나노위클리 기술을 통해 본
34. 한국보건산업진흥원, "화장품 소재 개발 전략", 2006.
37. 한국보건산업진흥원, "주요 기능성 화장품 소재 개발동향", 2006.
38. 홍재빈, 이재남, 나노입자의 개요와 기술동향 및 전망, 한국과학기술정보연구원,
 2005
40. BfR Consumer Conference on Nanotechnology in Foods, Cosmetics and
41. Cyclodextrins and Active Ingredient Complexes, I.R.A. Istituto Ricerche
42. Nanotechnology in cosmeceuticals: Benefits vs risks, current science, vol.. 93,
 no. 5, 2007.
44. Friends of the Earth. “Nanomaterials, Sunscreens and Cosmetics: Small
45. J. D. Kim etc, Surface Chemistry in biocompatible nanocolloidal particles, J
46. Robert F. “Calls Rise for More Research on Toxicology of Nanomaterials.”
47. Linda M. Katz, Regulatory and Risk Overview FDA Perspective, U.S. Food

50. http://www.s2l.or.kr

51. http://www.nanonet.info/
화장품에서의 나노기술 응용

정혜순 · 서주환 · 이호신 · 유재영 · 고원배

2008. 12
미 리 말

나노기술(NT)은 정보기술(IT), 바이오기술(BT)과 함께 21세기의 미래를 주도할 핵심기반기술로서 인식되고 있으며, 이에 대한 관심은 전 세계적으로 고조되고 있습니다. 특히 나노기술은 정보기술 및 바이오기술과의 융합을 통하여 전자·정보통신, 바이오·화학, 환경·에너지 등 전 산업분야에 걸쳐 근본적인 변화를 이끌어 낼 것으로 예상되고 있습니다.

이에 한국과학기술정보연구원(KISTI)은 국가적 전략기술인 나노기술에 대한 경쟁력 강화에 이바지 하고자 국내 나노기술전문가와 함께 ‘나노 화장품’에 대한 분석보고서를 발간하게 되었습니다. 본 보고서는 나노 화장품 분야에서 지금까지 이루어진 국내외 관련 연구개발 동향을 살펴보고, 미국, 일본, 유럽 및 한국에 출원된 특허들을 조사하여 현재까지의 기술개발 동향에 대하여 분석하였습니다. 또한 나노 화장품의 위생성 및 산업화 전망에 대해 기술하였다. 해당 분야의 기술과 산업이 종사하시는 분들에게 유용한 자료가 되기를 바라합니다.

본 연구는 과학기술부의 지원으로 수행되었으며, 본 연구원의 정혜순 책임연구원, 서주환 연구원, 이효신 선임연구원, 유재영 책임연구원과 삼육대의 고원배 교수가 공동 집필한 것으로 이분들의 노고에 깊이 감사드립니다. 본 보고서에 수록된 내용은 연구자 개인의 의견으로서 한국과학기술정보연구원의 공식 의견이 아니며 밝혀 드립니다.

2008. 11.

한국과학기술정보연구원

원장 박영서
목차

제1장 서론..1

제2장 나노 화장품 기술...3

 1. 기술의 개요..3
 가. 나노 화장품의 정의..3
 나. 나노 화장품의 특징..3
 다. 나노 화장품의 종류..3

 2. 기술의 연구개발 동향...13
 가. 해외...13
 나. 국내...13

 3. 화장품에 적용되는 나노기술..13
 가. 마이셀..13
 나. 유화...13
 다. 인지질과 리포솜...13
 라. Encalssulation..13

 4. 기능성 및 나노 화장품의 연구 동향...13
 가. 주름 개선 화장품...13
 (1) 주름개선 기능성 화장품..24
 (2) 나노기술을 이용한 주름개선 기능성 화장품..25
 나. 미백 화장품...32
 (1) 미백 기능성 화장품..24
 (2) 나노기술을 이용한 미백 기능성 화장품..25
 다. 자외선 차단 화장품...13
 (1) 자외선 차단 기능성 화장품...24
 (2) 나노기술을 이용한 자외선 차단 기능성 화장품.......................................25

 5. 전망 및 과급효과...34
제3장 특허 정보 분석

1. 특허 정보 분석의 목적..........................39
2. 분석방법.......................................40
 가. 분석범위..................................40
 나. 기술의 분류..................................40
 다. 분석대상 특허의 추출..........................42
3. 특허 분석......................................42
 가. 국가별 및 연도별 특허 출원동향..........................42
 (1) 국가별 특허 출원동향..........................42
 (2) 연도별 특허 출원동향..........................44
 (3) 주요 출원인 특허 출원동향..........................44
 나. 기술 분류에 따른 출원동향..........................45
 (1) IPC 분류별 출원 현황..........................45
 (2) 기술 분류별 출원 현황..........................47
 (3) 기술 분류별 연도별 출원 현황.....................48
 (4) 1단계 분류에 대응한 세부 기술 분류별 출원 분포...........49
 (5) 세부 기술 분류별 출원 분포....................49
 (6) 세부 기술 분류별 연도별 출원 분포.................49
 (7) 국가별 기술 분포 현황..........................49
 (8) 주요 출원인인 로레알 사의 연도별 기술 분포.............49
4. 관련 특허 예시..................................80
 가. 자외선 차단..................................42
 나. 생체전화/침투성 화장품(나노 캡슐).....................42
 다. 모발 기능성 화장품(나노 유기물).....................42
 라. 노화방지 기능성 화장품(나노 캡슐).....................42
 마. 섬소/착색/미백 화장품(나노 일반).....................42
 바. 일반 화장품(나노 일반)..........................42
5. 특허분석 결과..................................80

제4장 나노 화장품의 유해성..................................82
1. 배경...82
2. 나노입자와 화장품.............................84
3. 나노입자의 리스크 평가..........................84
4. 리스크 평가를 위한 나노입자의 특성 연구...............84
5. 나노입자 노출에 대한 SCCO의 견해.....................84
가는 폐부노출..42
나. 나노입자의 흡입...42
da. 세포에 대한 영향..42

제5장 시장 분석..39
 1. 시장 개요..82
 2. 시장 범위 및 특징..84
 3. 주요 업체 분석..84
 가. 아모레퍼시픽...42
 나. 한국콜마..42
 다. 샤넬...42
 4. 국내외 시장 규모..87
 5. 시장 예측...87

제6장 결론...39

참고문헌...89
표 차례

<표 2-1> 시판되고 있는 나노 화장품의 재료.........................4
<표 2-2> 일부 기업의 나노 화장품 기술..........................5
<표 2-3> 예상되는 특성 10가지...10
<표 2-4> 화장품용 유화의 종류 및 특징..................................10
<표 2-5> 입자의 크기와 예별전..10
<표 2-6> 리포솜의 제조와 분류..10
<표 2-7> 화장품용 리포솜 제조업체......................................12
<표 2-8> 화장품 산업의 주요 연구 분야..............................14
<표 2-9> 기미, 주근깨 완화제품 발전 현황..........................28
<표 2-10> 화장품산업의 변화와 전망.................................10
<표 3-1> 주요 분석대상 특허...40
<표 3-2> 나노 화장품 관련 특허분석을 위한 기술 분류...............41
<표 4-1> 나노입자의 물리, 화학적 특성...............................83
그림 차례

<그림 2-1> 나노 화장품의 피부전달 과정..9
<그림 2-2> 마이셀 형성...17
<그림 2-3> 계면활성제 분자의 자기조립화 과정.................................18
<그림 2-4> 농도와 표면장력에 따른 마이셀 형성.............................26
<그림 2-5> 고압 유화과정...26
<그림 2-6> 인지질의 분자구조...26
<그림 2-7> 리포솜 구조...26
<그림 2-8> 리포솜의 제조...26
<그림 2-9> Encapsulation 과정...26
<그림 2-10> 나노입자 제조방법중의 Neutralisation Emulsification Process..26
<그림 2-11> 분자 촉제에 의해 나노입자 제조....................................26
<그림 2-12> 기능성 화장품 관련 기술 흐름도.................................26
<그림 2-13> 기능성 화장품 항노화 기술 제품 로드맵........................26
<그림 2-14> 주름 개선 나노 화장품..26
<그림 2-15> 기능성 화장품 미백제품 기술 제품 로드맵....................26
<그림 2-16> 산화아연과 이산화탄소의 미립자.................................26
<그림 2-17> 자외선 차단 제품...26
<그림 2-18> 나노기술이 적용된 파운데이션.................................26
<그림 3-1> 특허분석 데이터베이스 구축과정......................................42
<그림 3-2> 국가별 특허 보유 현황..43
<그림 3-3> 연도별 전체 출원 현황..45
<그림 3-4> 각 국가의 연도별 출원 현황..46
<그림 3-5> 주요 출원인 현황...48
<그림 3-6> IPC 분류별 출원 현황...49
<그림 3-7> 기술 분류별 출원 현황...50
<그림 3-8> 기술 분류별 연도별 출원 현황..53
<그림 3-9> 세부 기술 분류별 출원 현황..54
<그림 3-10> 소분류별 출원 현황..55
<그림 3-11> 세부 기술별 연도별 출원 현황..56
<그림 3-12> 국가별 기술 분포 현황..57
<그림 3-13> 레알 사의 연도별 기술 분포..58

- 89 -