수산용 백신 개발현황과 전망

임봉수, 강봉조, 전형섭, 김은주

한국과학기술정보연구원
본 보고서는 수산생물백신 지식연구회의 분석보고서입니다.

2014.12.

한국과학기술정보연구원
수산생물백신 지식연구회
제 1 장 수산질병 발생 동향

제 1절 수산생물의 질병 발생 특성
제 2절 최근 해외 수산질병 이슈
제 3절 국내 해산 양식어류의 질병 발생 동향
1. 세균성 질병
2. 기생충성 질병
3. 바이러스성 질병
제 4절 수산생물질병의 예방과 대책

제 2 장 수산용 백신의 국내외 개발 현황

제 1절 노르웨이의 수산용 백신 개발 현황
제 2절 일본의 수산용 백신 개발 현황
1. 은어의 비브리병 불활성화 백신
2. 연어과 어류의 비브리오병 불활화 백신
3. 방어의 비브리오병 불활성화백신
4. 방어의 α용혈성연쇄구균증 불활화백신
5. 이리도바이러스감염증 불활화백신
6. 논치의 β용혈성 연쇄구균증 불활화백신
7. 방어 α용혈성 연쇄구균증 및 비브리오병 불활화백신
8. 방어 속 어류의 이리도바이러스감염증 및 α용혈성연쇄구균증 불활화 2가 주사 백신
9. 방어 및 갯방어(방어속 어류)의 이리도바이러스감염증, 비브리오병 및 α용혈성연쇄구균증불활화 3가 주사백신
제 3절 국외 백신관련 기타 사항
제 4절 국내 백신 개발 현황
1. 2003년 국내 수산용 백신 최초 승인
2. 2006년 연쇄구균병 1가 백신(S. iniae) 승인
3. 2009년 연쇄구균병 2종 혼합백신 승인
4. 연쇄구균 및 에드와드 혼합 3가 백신 현장 보급
제 3 장 새로운 백신의 개발동향 .......................................................... 37
제 1 절 백신의 기원 ........................................................................... 37
제 2 절 백신의 종류 ......................................................................... 38
제 3 절 백신 투여방법 ...................................................................... 40
   1. 주사법 .................................................................................. 41
   2. 침지법 .................................................................................. 42
   3. 경구법 .................................................................................. 44
제 4 절 수산용 백신 개발에 있어 문제점과 대책 ................................. 46
   1. 새로운 백신개발 동향 .......................................................... 46
   2. 수산용 백신에 대한 현장요구 ................................................. 53

제 4 장 수산용 백신개발에 있어 문제점과 과제 ................................. 57
제 1 절 백신 평가법의 확립 ............................................................. 57
제 2 절 시험어의 확보와 공급 ........................................................... 58
제 3 절 다어종, 소생산의 문제 .......................................................... 58
제 4 절 백신의 개발·시판의 신속화 ................................................... 59
제 5 절 세포내 기생성세균에 대한 대응 ............................................ 59
제 6 절 생백신의 개발 .................................................................... 60
<표 차례>

<표 1-1> 어류의 연쇄구균병 원인체의 종류

<표 1-2> 슈도모나스병 원인체 및 주요 감염 어류

<표 1-3> 난도벌 질병검사에 따른 스클리카병 진단 실태

<표 1-4> 논치 크기별 스클리카충 감염 현황 조사

<표 2-1> 제주지역 백신 지원 사업에 따른 보급 현황

<표 3-1> 발생백신과 생백신 비교

<표 3-2> 백신의 각종 투요법 특징

<표 3-3> 어류에 있어 바이오테크놀로지를 이용한 백신

<표 3-4> 어류에 있어 DVNA백신의 개발현황
<그림 차례>

그림 1-1 질병 발생 3대 요소 ................................................................. 1
그림 1-2 노르웨이 연어 양식장 ........................................................................ 3
그림 1-3 Streptococcus iniae와 S. parauberis의 전자현미경 사진 ..................... 2
그림 1-4 Streptococcus iniae와 S. parauberis의 용혈 사진 .............................. 2
그림 1-5 S. iniae 감염 연쇄구균병과 S. parauberis 감염 연쇄구균병의 증상 ...... 3
그림 1-6 양식연어의 연쇄구균병 원인체별 인위감염에 의한 폐사율 실험 결과 … 4
그림 1-7 Edwardsiella tarda의 배양사진과 전자현미경 사진 ........................... 5
그림 1-8 터봇의 에드와드병 증상 ................................................................. 6
그림 1-9 터봇의 에드와드병 증상 ................................................................. 6
그림 1-10 터봇 지어의 비브리오병 증상 ......................................................... 7
그림 1-11 터봇 및 돌돔의 비브리오병 증상 ..................................................... 8
그림 1-12 해산어에서 분리된 비브리오의 다양성 .............................................. 9
그림 1-13 비브리오의 TCBS 배지에서의 배양 특성 .......................................... 10
그림 1-14 L. aguillarum의 전자현미경 사진 ................................................ 10
그림 1-15 T. maritimum의 배양사진 및 전자현미경 사진 ............................. 11
그림 1-16 터봇의 환주세균병 증상 ............................................................... 12
그림 1-17 강도다리와 돌돔의 환주세균병 증상 ............................................. 12
그림 1-18 돌돔 및 강당돔의 슈도모나스병 증상 ............................................. 14
그림 1-19 쿠티카충의 현미경사진과 아가미 세엽 내 감염 ............................... 15
그림 1-20 돌돔 및 돌돔의 스키티카병 증상 ................................................ 15
그림 1-21 채표내 아가미에 감염된 해수어 백점충의 현미경 사진 ................. 17
그림 1-22 터봇 및 돌돔의 백점병 감염 증상 ............................................... 18
그림 1-23 터봇에 감염되는 엽티오보도증의 현미경 사진 .............................. 19
그림 1-24 채표내 아가미에 감염된 해수어 백점충의 현미경 사진 .................... 19
그림 1-25 동어로도바이러스병(RSIVD)의 주요 증상 .................................. 21
그림 1-26 바이러스성출혈성패혈증(VHS)증상 ........................................... 22
그림 1-27 스페인 터봇 양식장의 유입수 여과 및 살균처리시스템 설치 사례 ...... 23
그림 2-1 노르웨이에서의 수산용 백신 보급에 따른 대서양연어 생산량 증대 및 항생제 사용량 감소 ........................................... 26
그림 2-2 대서양 연어의 양식과정동안의 백신 접종 프로그램 ........................................... 26
그림 2-3 연어의 백신접종 사전 ......................................................... 26
그림 2-4 국내최초 상용화된 넘치 에드와드병 침지 백신 처리 광경 ................. 32
그림 2-5 연쇄구균병 주사 백신 접종 모습 .............................................. 33
그림 2-6 양식장에서의 넘치 백신 접종 모습 ............................................... 34
그림 2-7 국내 넘치 육상양식장 내부 전경 .................................................. 36
제 1 장 수산질병 발생 동향

제 1 절 수산생물의 질병 발생 특성

○ 수산생물의 질병은 우선 물을 매개로 한다는 점에서 다른 동물 질병과 차이가 있으며, 또한 수산생물의 질병 발생은 병원체의 존재, 수산생물의 건강 상태, 유입수 및 사육환경 등 질병 발생의 3요소에 의한다고 알려져 있다.

○ 수산생물의 질병은 유사한 품종이라 할지라도 지역에 따라 발생 특성을 매우 달리한다고 할 수 있다. 예를 들면 노르웨이 등의 대서양 연어에서하는 바닷물이(Sea lice)에 의한 피해가 보고되고 있으나 국내의 경우에는 이러한 병원체에 대한 보고나 피해가 거의 없는 실정이다.

그림 1-1 질병 발생 3대 요소
(어류의 건강도 악화, 병원체의 존재, 환경 악화 시 질병 감수성이 높다.)

○ KMI 자료에 의하면 국내 양식품종 중 가장 많은 생산량을 기록하고 있는 넘치의 경우 2010년 임식량 대비 폐사율이 약 60%에 달하는 것으로 보고된 바 있다. 이러한 높은 폐사율은 생산원가의 상승 요인으로 작용하여 양식 생산성을 멀어뜨리는 제1의 요인으로 작용할 수 있다. 따라서 지속적 양식산업의 발전을 위해서는 무엇보다 질병관리를 위한 폐사율 저감이 무엇보다 필요한 실정이다.
제 1 장 수산질병 발생 동향

제 2 절 최근 해외 수산질병 이슈

- 최근 해외의 수산생물 질병 발생과 관련된 이슈 중 비중 있게 다루어지는 질병은 전염성연어빈혈증(ISA, infectious salmon anaemia)과 새우의 조기폐사증후군(EMS, early mortality syndrome/AHPNS, acute hepatopancreatic necrosis syndrome)을 들 수 있다.


- 쿠레의 경우 2010년 연어 생산량은 전염성 연어빈혈증(ISA)이 발병하기 전인 2007년의 절반 수준인 30만 톤으로 감소한 바 있다. 쿠레의 ISA 감염은 노르웨이산 연어알이 쿠레로 수입된 후 발생한 것으로 알려졌으며, 이 병의 감염으로 연어 폐사율이 급증하여 2008년 1월에 2,960만 마리였던 연어 개체 수가 2009년 6월에는 290만 마리로 무려 90% 급감한 것으로 알려졌다.

- 올해도 쿠레와 노르웨이에서 이 질병의 발생 사례가 보고되고 있다. 노르웨이는 2009년에 연어 양식 면허가 늘면서 지속적으로 생산량 증가세를 보이고 있으나, 올해 ISA 발생 사례가 보고되고 있다.

- 연어의 ISA는 1984년 노르웨이의 대서양 연어(Salmo salar)에서 처음 보고된 이후 캐나다, 미국, 폰도 제도, 아일랜드와 스코틀랜드, 쿠레에도 보고된 질병이다.

- 새우의 조기폐사증후군(EMS)은 2009년 규명이 되지 않은 원인에 의하여 중국에서 처음 발생한 것으로 보고되고 있는데, 중국의 Hainan, Guangdong, Fujian 및 Guangxi 성에서 양식하는 새우의 80%가 폐사되었
제 1 장 수산질병 발생 동향

다. EMS 는 중국에서 베트남으로, 그리고 말레이시아로 전파되었는데, 이들 국가들에서도 중국에서 같은 대량 폐사가 발생되었다.


그림 1-2 노르웨이 연어 양식장
* 출처 : www.fisheriesnews.co.kr, 베트남 새우 양식장 전경(오른쪽) 남새우 양식장 전경(오른쪽)

○ 그 외 최근 해외의 주요 수산질병 발생 현황을 보면 새우의 화반질병(White Spot Disease)이 인도와 필리핀 등에서 발생 보고가 있으며, 영국에서는 대서양 굴에 굴허피스바이러스감염증((Ostreid herpes virus, Oshv-1)이 발생하여 피해를 준 사례가 알려져 있다.

○ 진균류 감염증인 가재전염병(Apanomyces astaci)은 대만, 스위스, 영국에서 관상용 가재 및 ) 환집계발 가재(white-clawed crayfish)에 발생 보고가 있었으며, 대만의 황소가리의 라나바이러스병(infection with Ranavirus), 영국 낚시터에서 잉어의 잉어허피스바이러스감염증(KHD), 노르웨이의 대서양연어에 자일로닥탈루스감염증(Gyrodactylus salaris) 등이 보고된 바 있다.
제 3 절 국내 해산 양식어류의 질병 발생 동향

1. 세균성 질병

○ 어류의 세균성 질병 병원체는 약 75여 종이 알려져 있으며, 여기에서는 연쇄구균병, 비브리오병, 에드와드병, 슈도모나스병, 활주세균병 등에 대하여 주로 설명하기로 한다.

1.1. 연쇄구균병 (Streptococcosis)

○ 전 세계적으로 어류의 연쇄구균병 원인체는 10여 종이 보고되어 있는 반면 국내의 경우 가장 생산량이 많은 낙지의 연쇄구균병은 2종의 연쇄구균에 의해 발생하는 것으로 보고되고 있다.

<table>
<thead>
<tr>
<th>병원체</th>
<th>대상 어류</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enterococcus (Streptococcus) faecalis subsp. liquefaciens</td>
<td>Rainbow trout (Oncorhynchus mykiss), Catfish</td>
</tr>
<tr>
<td>Vagococcus salmoninarum</td>
<td>Atlantic salmon (Salmo salar), Brown trout (Salmo trutta), Rainbow trout</td>
</tr>
<tr>
<td>Lactobacillus spp.</td>
<td>Salmonids</td>
</tr>
<tr>
<td>Lactococcus garvieae (=Enterococcus seriolicida)</td>
<td>Many fish species</td>
</tr>
<tr>
<td>Lactococcus piscium</td>
<td>Rainbow trout</td>
</tr>
<tr>
<td>Streptococcus dysgalactiae</td>
<td>Amberjack (Seriola dumerili), Yellowtail (Seriola quinqueradiata)</td>
</tr>
<tr>
<td>Streptococcus difficilis (=str. agalactiae)</td>
<td>Carp (Cyprinus carpio), rainbow trout, Silver pomfret (Pampus argenteus), Tilapia (Oreochromis spp.)</td>
</tr>
<tr>
<td>Streptococcus iniae (=Str. shiloi)</td>
<td>Various freshwater and coastal fish species</td>
</tr>
<tr>
<td>Streptococcus milleri</td>
<td>Koi carp (Cyprinus carpio)</td>
</tr>
<tr>
<td>Streptococcus parauberis</td>
<td>Turbot (Scophthalmus maximus), Flounder</td>
</tr>
</tbody>
</table>

<표 1-1> 어류의 연쇄구균병 원인체의 종류
제 1 장 수산질병 발생 동향


그림 1-3 Streptococcus iniae와 S. parauberis의 전자현미경 사진

그림 1-4 Streptococcus iniae와 S. parauberis의 용혈 사진

○ 외부 임상소견 또한 S. iniae 감염의 경우에는 안구돌출이나 복부팽만 (탈장)이 주증으로 관찰되며, S. parauberis의 경우는 체색 흑화가 주증상이다. 해부 소견은 S. iniae 감염 연쇄구균병의 경우는 복수를 동반하기
제 1 장 수산질병 발생 동향

는 경우가 많은데 S. parauberis 감염은 복수는 거의 관찰되지 않으며, 복벽 안쪽의 출혈과 심장 농양 등이 확인된다.

○ S. iniae와 S. parauberis에 대한 인위감염(공격시험) 결과 S. iniae 감염군의 경우에는 감염 후 약 3~5일 정도부터 병증을 보이면서 폐사가 발생하는데 S. parauberis의 경우는 감염 후 약 2주 정도가 지나야 폐사가 발생하는 것으로 보고되어있다. 이처럼 S. paraubers 감염군은 만성적인 감염 특성을 보인다. 따라서 S. parauberis 감염에 의한 연쇄구균병의 대처법으로는 정기적인 진단을 통해 병원체 감염 여부를 미리 파악하고 대처해야 한다.

그림 1-5 S. iniae 감염 연쇄구균병과 S. parauberis 감염 연쇄구균병의 증상

○ 과거에 주로 발생하였던 S. iniae 감염 연쇄구균병 발생 시에는 감염 후 단기간 내에 증상을 보이면서 폐사가 일어나므로 양식 현장에서 관리자들이 외형상 소견에 의해서도 병 발생 상황 확인이 가능하고 즉시 검사 및 투약이 이루어질 수 있었다.

○ 하지만 최근 S. parauberis 감염 증상의 경우에는 전술한 바와 같이 만성적 발병 특성과 외부적 소견이 체색 흑화 증상만 보임으로써 양식 현장에서 병발생 인지가 늦음으로써 적절한 시기에 투약 조치 등이 이루어 지지 못하는것에서 피해가 증가하는 것으로 판단된다. 따라서 최근 발생하는 연쇄구균병의 피해 저감을 위해서는 폐사 발생 이전에 정기적인 진단을 통해 병원체 검출 시 적절한 약제의 투약 등이 필요하다.
제 1 장 수산질병 발생 동향

그림 1-6 양식넘치의 연쇄구균병 원인체별 인위감염에 의한 폐사율 시험 결과
* 출처 : 한국어문학회지 제20권제1호

○ 최근 발생하는 연쇄구균병에 대한 또 하나의 대비책이 바로 VHS와의 혼합감염에 대한 확인이 필요하다. 대부분의 양식어업들은 VHS의 경우 치어에만 발생하는 것으로 생각하고 있으며, 육성어(성어)의 질병 발생 시에는 바이러스성 질병에 대한 검사의 필요성을 느끼지 못하는 실정이다.

○ 만약 육성어(성어)에 VHS와 연쇄구균병이 혼합감염되어 있는 경우에 세균성 질병검사만 실시한 경우 검사대상 시료 중 일부에서 연쇄구균이 검출되면 대부분 해당어군을 연쇄구균 단독감염으로 진단하는 경우가 대부분이다.

○ 어떤 경우에는 1차 및 2차 검사에서 연쇄구균이 검출되지 않고 지속적인 검사를 실시해서 3차 검사에서 검사 시료 중 일부에서 연쇄구균이 검출된 경우에도 1, 2차 검사에서 원인체가 검출되지 않음에도 연쇄구균병으로 확인해서 이에 대한 처방만 하는 사례들이 있다고 판단된다.

○ 이는 대부분의 수산질병관리원에 바이러스 진단장비가 갖추어져 있지 않은 이유로도 판단된다. 이러한 결과로 경우에 따라서는 VHS가 주원인임에도 불구하고 연쇄구균병에 대한 항생제 투약으로 인해 불필요한 투약 및 경비 손실을 야기할 수도 있을 것으로 생각된다.

○ 간혹 연쇄구균병에 대한 투약을 지속적으로 실시함에도 병이 호전되지
제 1장 수산질병 발생 동향

없는 경우 또 다른 약제를 투여하는 사례도 있다고 여겨지는데 이러한 경우에는 VHS의 혼합감염 유무 확인 검사가 필요할 것으로 판단된다.

1.2. 에드와드병

○ 넼치의 에드와드병은 2000년대 초반까지만 하더라도 제주도 제주를 비롯한 국내 넼치의 질병 중 가장 심각한 질병중 하나로 알려져 있던 질병으로 복수의 자류 및 탈장 등의 증상을 보인다. 이러한 이유로 국내의 수산용 백신 개발 필요성이 높게 인식되었던 질병이 에드와드병이며, 2006년도에 에드와드 침지 백신이 처음 개발되어 상용화된 바 있다. 그러나 2010년도를 기점으로 이병의 발생이 줄어들었다가 최근 다시 증가하는 경향을 보이고 있다.


그림 1-7 Edwardsiella tarda의 배양사진과 전자현미경 사진
제 1 장 수산질병 발생 동향

1.3. 비브리오병

○ 비브리오병은 전 세계적으로 어류 질병 중 가장 잘 알려져 있는 질병이다. 녹치의 경우도 비브리오병 진단비율이 세균성질병 중 가장 많은 것으로 알려져 있다. 그러나 비브리오의 경우는 해수에 상존하는 세균으로서 지금까지 비브리오속에 약 40여 종의 세균이 알려져 있다. 이 중 어류의 질병관 관련된 종은 약 10여 종으로 보고되고 있다.

○ 방원성 유무를 떠나 제주지역 녹치에서 분리되는 비브리오속 세균에 대한 조사 결과 총 20종 이상이 분리된 보고가 있다. 최근 세계적으로 문제가 되고 있는 세균의 조기치사증후군(EMS, early mortality syndrome) 원인체도 비브리오속 세균으로 알려져 있다. 이는 가장 잘 알려져 있으며, 가장 많이 연구된 방원체임에도 불구하고 실험 진단에 있어서도 가장 주의가 요구되는 질병으로 판단된다.
제 1 장 수산질병 발생 동향

그림 1-10 넙치 치어의 비브리오병 증상 예

◦ 앞서 설명한 연쇄구균병과 에드와드병의 경우는 검사용 어류(병어) 검사시 단일한 형태로 세균이 분리 배양되지만 비브리오의 경우는 1개체에서 분리 배양된 경우에도 단일한 경우가 드물고 또한 임상증상을 보이는 여러 마리의 어류의 조직을 세균 배양할 경우에 각각의 개체마다 다양한 비브리오 세균이 분리되는 경우가 많다.

◦ 이럴 경우 이때 분리된 비브리오 세균을 해당 어류 집단의 병원체로 단정할 수 있는가에 대한 고민이 필요하다. 예를 들면 스쿠터카병에 감염된 넙치를 대상으로 세균 배양검사를 할 경우 많은 경우에 비브리오균이 배양될 수 있다. 이럴 경우 비브리오병으로 진단하는 것은 오류를 범할 수 있다고 본다. 그리고 이런 경우 대부분은 1개체의 어류에서도 단일 종의 비브리오 콜로니가 아닌 여러 종의 비브리오 콜로니가 진단용 배지에서 배양될 것이다.
제 1 장 수산질병 발생 동향

그림 1-11 남치 및 돌돔의 비브리오병 증상 예
* 출처 : 강 등, 양식어류의 질병과 대책

○ 어류의 질병 진단 경험으로 볼 때 연쇄구균병이나 에드와드병의 경우는 원인체가 단일(연쇄구균의 경우는 S. parauberis 또는 S. iniae, 에드와드병의 경우 E. tarda)하기 때문에 해당 검체에 대한 시료 검사 결과 동일 어류 집단에서는 동일종의 병원체가 분리배양될 확률이 높다.

○ 그러나 비브리오의 경우에는 앞서 설명과 마찬가지로 종이 다양하기 때문에 비브리오병을 확진하기 위해서는 검사에 사용한 시료에서 동일종의 비브리오가 분리되어야만 질병 원인체로 추정이 가능하다. 이러한 이유로 가장 기본적인 질병임에도 진단 시 가장 주의가 요구되고 있다고 할 수 있다.

○ 특히 비브리오균의 검출율(질병원인체 여부와 상관없이)이 성어에서보다는 치어에서 분리율이 높은데 양식현장에서 이처럼 정확한 원인 판단 없이 단순히 검체에서 비브리오가 분리되었다는 사실만으로 비브리오병으로 진단하고 이에 대한 약제를 처방한다면 불필요한 약제의 처방과 더불
제 1 장 수산질병 발생 동향

어 여러 가지 문제를 야기할 수 있을 것으로 판단된다.

○ 따라서 비브리오병으로 진단하기 위해서 또는 이에 대한 약제 처방을 위해서는 다수의 검체를 대상으로 진단을 실시하여 각 검체에서 분리되는 비브리오균이 단일하게 분리되는지에 대한 판단과 각각의 검체에서 분리된 종이 동일종인지의 판단하는 것이 필요하다고 본다.

○ 그리고 필요한 경우에는 제차 반복 진단을 통해 동일한 형태로 비브리오균이 분리되는지 약제 감수성 시험 결과 동일한 성상의 결과가 도출되는지를 검토할 필요가 있다.

그림 1-12 해산어에서 분리된 비브리오의 다양성
제 1 장 수산질병 발생 동향

1.4. 활주세균병

- 활주세균병은 닭수어의 경우 Columnaris Disease 원인체로 알려진 Flavobacterium columnare에 의한 부식병이 잘 알려져 있으며, 해산어의 경우는 Tenacibaulum maritimum이 원인체로 보고되어있다. 1972년 일본에서 소형 가두리에 중간 육성 중인 참돔과 조피볼락 치어에 콜롬나리스 병(Columnaris Disease)과 유사한 질병이 확인되어 동정 결과 Tenacibaulum maritimum(처음에는 Flexibacter maritimus)이 동정 되었 다.
제 1 장 수산질병 발생 동향

다른 대부분의 세균성 질병은 배지를 이용한 배양법이 개발되어 있고 특히 선택배지를 이용한 방법으로 질병 원인체의 동정이 어느 정도 가능하나 환주세균병은 배지를 이용한 방법으로는 동정이 어렵다.

분리를 위한 배양은 해수 Cytophaga 배지 또는 TYC 배지, Marine Agar를 이용할 수 있으나 배양 조작이 아가미나 체표 채양 조작이므로 다른 여러 가지 세균이 혼합적으로 배양됨으로써 전문적 지식이 없는 경우 순수 분리가 어렵다.

따라서 통상 활주세균병 진단은 임상증상과 더불어 현미경에서 활주운동을 하는 세균 검출로 간단 진단을 하는 것이 일반적인 현실이다. 그 외에 정확한 진단을 위해서는 PCR 기법을 이용하여 진단할 수 있다.

활주세균병은 최근 S. parauberis를 원인체로 하는 연쇄구균병과 복합감염을 일으키는 경우가 많아서 것으로 조사되고 있다. 즉 아가미부식병과 연쇄구균병 복합감염이 덤치 성어에서 자주 관찰되고 있어, 연쇄구균병에 대한 처방과 더불어 활주세균병에 대한 처방이 동시에 이루어져야 할 필요가 있다.
1.5. 슈도모나스병

○ 어류의 슈도모나스증의 원인균은 일반적으로 P. anguilliseptica 와 P. fluoresens가 알려져 있는데 여기서는 P. anguilliseptica에서 대해 주로 다루기로 한다. P. anguilliseptica는 1972년 일본에서 양식 뱃שר어의 적점병(Red spot disease) 원인균으로 처음 보고되었는데 최근에는 양식 돌돔에서도 이 질병이 보고되고 있다.

○ 이 균은 그란 음성 간균으로 0.5~1.0×1.5~5.0 μm로 한 개 또는 여러 개의 편모를 가지는데, 배양 온도에 따라 25°C 이하에서는 활발한 운동성이 지니지만 25°C 이상에서는 운동성이 약하다고 보고되어 있다. 또한 분리를 위해 배양할 때 그 시간이 약 3일 정도로 다른 해산어 질병 세균에 비해 긴 것이 특징이다.
포도당을 포함한 어떠한 당도 분해하지 않으며 옥시다이야세와 카탈라아세는 양성이다. 닭수 중에는 1일 이내 사멸하는 것으로 보고되었다. 발육 가능 염분농도는 0.1~4.0%, 최적 염분농도는 0.5~1.0%이다.

범장어의 경우 인위적인 감염 실험에서 주사 접종으로는 감염을 일으켰으나 경구투여로는 감염되지 않았으며 젖지의 경우는 고농도 식염처리 젖지 감염 시에만 일어난다고 보고되고 있다.

K+형과 K-형의 2가지 혈청형이 있는데 K-형은 병원성이 없는 것으로 알려져 있다. 국내 해산어의 경우 슈도모나스병은 주로 돌돔에 감염사례가 많이 알려져 있는데 주로 저수온기 양식 돌돔에 피해가 자주 보고되고 있다.

표 1-2 슈도모나스병 원인체 및 주요 감염 어류

<table>
<thead>
<tr>
<th>병원체</th>
<th>주요 감염 어류</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pseudomonas anguilliseptica</td>
<td>Rainbow trout, marine fish species, and particularly cod, eels(Anguilla anguilla, A. japonica), black spot sea bream(Pagellus bogaraveo), gilthead sea bream(Sparus aurata)</td>
</tr>
<tr>
<td>Pseudomonas chlororaphis</td>
<td>Amago trout(Oncorhynchus rhodurus)</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>Most fish species</td>
</tr>
<tr>
<td>Pseudomonas plecoglossicida</td>
<td>Ayu(Plecoglossus altivelis), Pejerrey(Odontesthes bonariensis)</td>
</tr>
<tr>
<td>Pseudomonas pseudoalcaligenes</td>
<td>Rainbow trout</td>
</tr>
<tr>
<td>Pseudomonas putida</td>
<td>Ayu, Rainbow trout</td>
</tr>
</tbody>
</table>
제 1 장 수산질병 발생 동향

2. 기생충성 질병

2.1. 스쿠티카병

![스쿠티카병의 이미지]

그림 1-18 돌돔(왼쪽) 및 강당돔(오른쪽)의 슈도모나스병 증상
*출처: 양식어류의 질병과 대책

양식넓치 스쿠티카충 최초 감염 보고는 1986년 일본에서 보고되었으며, 제주지역에서는 1990년대 중반부터 피해가 확산되기 시작하였다. 이러한 스쿠티카병은 현재 제주지역에서 넓치 산업에 있어 VHS와 더불어 가장 고질적인 피해 질병으로 꼽히고 있다. 과거 치어 위주로 발생하던 것이 최근에는 20~30cm 이상에서도 감염 사례가 매우 많은 실정이다.

<표 1-3> 년도별 질병검사에 따른 스쿠티카병 진단 실태
*자료: 제주특별자치도해양수산연구원

<table>
<thead>
<tr>
<th>년도별</th>
<th>질병검사 건수</th>
<th>스쿠티카병 진단건수</th>
<th>비율(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>588</td>
<td>192</td>
<td>32.65</td>
</tr>
<tr>
<td>2010</td>
<td>632</td>
<td>192</td>
<td>30.38</td>
</tr>
<tr>
<td>2009</td>
<td>548</td>
<td>195</td>
<td>35.58</td>
</tr>
</tbody>
</table>

<표 1-4> 넓치 크기별 스쿠티카충 감염 현황 조사
*자료: 제주특별자치도해양수산연구원

<table>
<thead>
<tr>
<th>년도별</th>
<th>0-10cm</th>
<th>10-20cm</th>
<th>20-30cm</th>
<th>30-40cm</th>
<th>40cm 이상</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011</td>
<td>7.3%</td>
<td>47.4%</td>
<td>35.4%</td>
<td>8.3%</td>
<td>1.6%</td>
</tr>
<tr>
<td>2010</td>
<td>5.2%</td>
<td>54.2%</td>
<td>33.3%</td>
<td>7.3%</td>
<td>0%</td>
</tr>
<tr>
<td>2009</td>
<td>5.1%</td>
<td>60.5%</td>
<td>26.6%</td>
<td>4.2%</td>
<td>3.6%</td>
</tr>
</tbody>
</table>
제 1 장 수산질병 발생 동향

○ 그리고 과거에는 체표 극양을 위주로 하는 임상증상을 보이는 경우가 대부분이었으나 최근에는 외부적으로는 체색 흑화 외에는 별 증상을 보이지 않으나 뇌조직에 감염을 일으키는 경우가 증가하는 것으로 조사되고 있다.

○ 스크티카병 피해 저감을 위해서는 백신 개발의 필요성이 제기되고 있다 (유럽의 경우에는 터봇의 스크티카병 백신이 상용화 단계에까지 이르렀다고 알려져 있다). 또한 수산용 구충제가 제품화되어 사용되고 있으나 전술한 것처럼 뇌조직에 감염을 일으킨 경우나 중증의 경우에는 구충제에 의한 효과를 기대하기 어렵다.

그림 1-19 쿠티카충의 현미경사진(왼쪽)과 아가미 세엽 내 감염 (오른쪽)*출처 : 강 등, 양식어류의 질병과 대책
제 1 장 수산질병 발생 동향

![사진]

그림 1-20 넼치(위)와 돌돔(아래)의 스쿠티카병 증상 예
*출처: 강 등, 양식어류의 질병과 대책

○ 따라서 스쿠티카병은 이제는 구충제를 이용한 치료 차원 보다는 효과적인 백신 개발과 더불어 양식시설 개선(수조의 재질, 유입수 및 배출수 처리 시스템 등), 적정 사육밀도 관리, 수조 청소 등을 통한 위생관리 등 예방적 노력에 의해 피해를 줄여야 할 것으로 판단된 다.

2.2. 백점병

○ 백점병은 원인 기생충이 체표 및 아가미에 기생 시 하양계 보이는 것에 기인하여 붉어진 명칭으로, 담수어와 해수어 모두에서 큰 피해를 일으키는데 담수 및 해수에서 그 원인종이 다르다. 해수어의 백점충은 1951년 Brown이 처음 보고한 이후 Coloni에 의해 생활사가 연구되었다.

○ 백점충의 적정 생육 온도는 약 30℃로 알려져 있으며 20~30℃에서 주로 병원성을 나타내고 21~24℃에서는 약 11~15일 만에 생활사가 완성된다.
제 1장 수산질병 발생 동향

○ 일반적으로 해수어 백점충의 생활사가 담수어 백점충에 비해 길다고 알려져 있는데, 담수어 백점충의 경우 영양체에서 침입자충을 만드는데 걸리는 시간은 23~24°C의 경우 3~6일 정도가 소요된다.

그림 1-21 체표내 아가미에 감염된 해수어 백점충의 현미경 사진
출처 : 강 등, 양식어류의 질병과 대책

○ 해수어 백점충의 감염 증상으로는 심할 경우 어체 표면에 흰 점들이 관찰되며 아가미의 경우는 하양케 부품 변색이 확인된다. 돌돔 등 돌류의 경우에는 안구에 감염을 일으켜 안구 백탁이 나타날 때도 있다. 그리고 체표 내 점액이 과다 분비되는 현상이 관찰된다. 아가미에 백점충이 대량 감염되면 아가미가 퇴색되어 빈혈 증상을 보이기도 한다.

○ 백점병은 한 번 발생하면 심한 경우 해당 수조 전체가 폐사하기도 하므로 양식 현장에서는 주의깊은 관찰이 필요하다. 우선 어름철에 감작스럽게 먹이 섭취량이 감소하거나 수조 표면에 이상 거품이 발생하는 경우에 백점병을 의심해야 한다.

○ 그리고 돌류의 경우에는 표층에 유영하면서 사람이 다가가도 도망치지 않거나 어류의 체색이 뚱뚱하게 흰색 변화가 있는 경우나 우선 백점병을 의심하여 진단해야 한다.

○ 백점충이 아가미에 감염되면 어류가 호흡곤란으로 폐사하게 되는데, 여름철 양식 돌류 수조 등에 백점충이 감염될 경우 심하면 약 90% 이상이 폐사한다. 백점충은 주로 체표와 아가미에 감염을 주로 일으킨다.

○ 특히 체표에 감염될 경우 어류가 바닥을 스치는 유영을 하기도 하고 아
제 1 장 수산질병 발생 동향

가미에 심하게 감염을 일으킨 경우는 점액이 과다 분비로 인하여 호흡을 못하게 되어 결국 폐사에 이르게 된다.

○ 이 질병은 돌류나 북어의 어름철 주요 관리 대상 질병으로 알려져 있다. 돌돔의 경우 어름철뿐만 아니라 겨울철에도 백점병에 의한 피해사례가 발생하고 있는데, 감염 증상이 관찰되기 전에 정기적인 현미경 진단을 통해 사전 대비해야 한다.

○ 대책으로는 감염 사이클(cycle)을 차단하는 것이다. 영양체가 숙주에서 이탈하여 침입자충을 대량 생산하고 이 침입자충이 다시 감염을 일으키기 때문에 수선 중증인 감염어를 체거하여 침입자충의 확산을 방지하여야 한다. 백점병 발생 시 깨끗한 수조를 마련하여 정상적인 개체를 옮기는 것으로서 발병 확산을 방지할 수도 있다.

그림 1-22 남치(위) 및 돌돔(아래)의 백점병 감염 증상 예
(출처 : 강 등. 양식어류의 질병과 대책)
2.3. 익티오보도병

○ 익티오보도병의 원인체는 담수어의 경우에는 Ichthyobodo necator로 동정되었으나, 남치를 비롯한 해산어의 익티오보도병 원인체는 정확한 동정이 이루어지지 않은 것으로 여겨진다. Ichthyobodo의 동정에는 불확실한 점이 많으나, 감염어의 증상과 병리에 대해서는 기본적으로 큰 차이가 없는 것으로 생각된다.

그림1-23 남치에 감염되는 익티오보도충의 현미경 사진
(원: 200배, 오: 1,000배)
*출처 : 강 등, 양식어류의 질병과 대책

○ 양식남치의 경우는 스크루크표의 체표 감염증에 의한 체표 궤양 증상처럼 길고 깊은 궤양보다는 체표가 약하게 박리되는 증상이 판찰되며 심할 경우는 출혈을 동반하기도 한다. 남치의 경우 감염 시에 섭이량이 줄어든다. 간혹 체표에는 관찰되지 않고 아가미에서만 관찰되는 경우도 많다.

○ Ichthyobodo는 전 세계적으로 분포하며 생존 가능한 수온 범위는 2~29℃이지만, 양식남치의 경우는 사계절로 겨울에서 이온 동절의 상대적인 감염률이 높은 것으로 조사되고 있으며 세포의 박리가 광범위하게 일어나면 삼투압 조절이 어려울 수 있어 치명적이라는 보고가 있다.

○ 특히 남치 치어의 경우에는 치명적 피해를 유발하는 경우도 종종 발생하며 주의가 요구되는 질병이며, 감염 시 백혈병 감염 증상과 유사하게 급작스러운 섭이 감소현상이 관찰되는 경우가 있다.
제 1 장 수산질병 발생 동향

3. 바이러스성 질병

○ 국내 해산어류의 바이러스병은 참돔이리도바이러스병, 바이러스성출혈성 폐혈증, 바이러스성신경괴사증, 해산버나바이러스병 등을 주로 들 수 있다.

3.1. 참돔이리도바이러스병(RSIVD)

○ 이리도바이러스병은 고수온기에 참돔이나 돌돔과 같은 돌류 및 봉어, 농어, 넘치 등 약 20여 종에 발병되는데, 1990년 일본의 한 참돔양식장에서 처음 발생이 확인되었으며 참돔이리도바이러스(RSIV, Red Seabream Iridovirus)로 이름 붙여졌다.

○ 일반적으로 RSIV에 감염된 어류는 체색이 혹화 또는 퇴색하고 동작은 느리며 유영력까지 상실하여 수면을 힘없이 머무른다. 체표 및 지느러미에 출혈성의 상처, 안구의 가벼운 돌출과 출혈이 확인되며, 이 중에는 아가미가 퇴색하고 아가미 주변에서 출혈이 관찰되기도 한다.

○ 제주를 비롯한 국내의 경우도 양식 돌돔에 이 질병으로 인한 피해가 자주 발생하고 있다. 또한 이 병은 수평감염으로 인해 주로 확산되는 것으로 알려져 있으며, 수온이 높은 여름철에 주로 발병한다. 제주지역 발생 사례에서 보면 다른 바이러스성 질병에 비해 발생기간이 길게 지속되는 특성을 보인다.
제 1장 수산질병 발생 동향

3.2. 바이러스성출혈성패혈증(VHS)

○ 국내 해산어의 바이러스성질병 중 피해가 큰 질병으로 꼽히는 것이 앞서 설명한 참돔이리도바이러스병과 바이러스성출혈성패혈증(VHS, Viral Hemorrhagic Septicemia)이다.

○ 주요 증상으로는 체표에 점상출혈을 일으키며, 해부 소견으로는 심한 경 우 간에도 점상출혈을 보이기도 한다. 이 질병의 발생 동향을 보면 제주 지역의 경우 2006년 말에 넘치에 의심 증상이 확인되기 시작하여 2007년도에 공식 확인된 바 있다.

○ 즉 2006년도 이전에는 넘치에 발생 사례가 확인되지 않았으나 2007년도 이후 스크터키병과 더불어 넘치 치어의 가장 고질적인 질병으로 피해를 야기하고 있는 실정이다. 이 질병은 수온 민감성 질병으로 주로 저수온 기인 12월부터 이듬해 5월까지 발생이 주로 나타나고 있다.

○ 최근에는 치어뿐만 아니라 넘치 성어에도 발생이 일부 확인되고 있는데 성어의 경우에는 연쇄구균병과 복합감염을 일으키는 사례가 있는데 질병 전단 시 세균성질병에 환경하여 전단이 이루어질 경우 주관적인 전단이 되지 않아 피해가 발생할 수 있다.

그림 1-25 돔이리도바이러스병(RSIVD)의 주요 증상 예
*출처: 강 등, 양식어류의 질병과 대책
제 4 절 수산생물질병의 예방과 대책

1. 종묘의 방역관리

○ 성공 양식을 위해서는 건강한 종묘의 입식이 무엇보다 중요하다. 건강한 종묘의 입식을 위해서는 입식 전 사전 질병검사를 등의 필요한 것으로 판단된다.

○ 홍콩의 수산양식 당국(AFCD, Aquaculture, Fisheries and Conservation Department)에서는 GAP 지침(Series of Good Aquaculture Practice)을 만들어 사료(Series 1 – Fish Feed Management), 해수양식(Series 2 – Mariculture Management), 못양식(Series 3 – Pond Culture Management), 어류질병 방지(Series 4 – Fish Disease Prevention), 치어 건강관리(Series 5 – Fry Health Management) 등 분야별 양식관리지침을 만들어 관리하고 있다.

○ 우리나라에서도 제주도에서는 2002년부터 제주도 내외로 반출 입되는 수산양식 종묘에 대하여 입식 전 사전 절병검사를 의무화하는 조례(조례명:제주특별자치도수산물방역및안전성검사에관한 조례)를 제정하여 운영하고 있다.

○ 국내 남치 양식 산업의 큰 문제점 중 하나가 질병이라 할 수 있는데 이로인한 질병의 문제는 종묘(치어) 입식 후 약 150~200g 급 정도(이 단계

그림 1-26바이러스성출혈성패혈증(VHS)증상 예
*출처 : 강 등, 양식어류의 질병과 대책
제 1 장 수산질병 발생 동향

를 통상적으로 중간 육성단계로 일컬어지고 있음) 성장 과정까지의 질병 관리가 무엇보다 중요하다. 왜냐하면, 이 단계에서 전체 폐사의 약 60~70%가 발생하는 것으로 알려지기 때문이다.

앞서도 일부 설명이 있었지만 이러한 중간 육성단계의 주요 피해 질병이 스클리카병과 VHS(바이러스성출혈성패혈증)이다. 이 두 가지 질병예방을 위해서는 현재 백신 보급이 이루어지지 않은 상태이므로 위생 사육 관리를 통한 예방이 필요하다고 판단된다.

그림 1-27 스페인 터.btnClose장의 유입수 여과 및 살균처리(자외선 살균기) 시스템 설치 사례
제 1 장 수산질병 발생 동향

○ 현재 국내의 양식장은 유입수가 아무런 여과나 살균 처리 없이 사육수조로 공급되고 있어 미세한 뼛이나 모래 유입시 스키타카를 비롯한 여러 가지 기생충류가 유입될 가능성이 있으며, 유수식 양식장 특성상 배출된 해수의 일부가 취수 과정에서 혼입될 가능성이 매우 높으며 이때 자연 수중이나 배출수에 존재하는 세균 및 바이러스 등의 병원체가 위생처리 없이 유입됨으로써 양식어류에 병을 유발할 가능성이 매우 높다.

○ 스페인의 경우에는 터봇 양식장 전체 유입수를 드럼 필터와 저온선살균 처리 등의 소독과정을 거친 후 사육수로 공급하는 경우가 대부분이다. 국내의 경우도 양식장 전체에 이러한 위생처리 시스템 설치는 비용 측면에서 어려울 수 있으나 중간 육성단계만이라도 이러한 방식의 유입수 소독처리가 도입된다면 질병으로 인한 피해의 많은 부분을 저감할 수 있을 것으로 판단되며 현재 이러한 연구가 시범적으로 이루어지고 있다.

○ 국내의 경우 염치의 백신이 개발되어 상용화 단계에 있는데, 건강한 어류의 생산을 위해서는 질병 발생 후 치료 대책이 따라서 질병 발생 전 예방이 우선되어야 하는데 이러한 예방 기술로서 가장 먼저 고려되어야 할 것이 바로 백신이다.

○ 앞서 건강한 수산생물의 질병관리를 위해서는 건강한 종묘의 입식, 입식 종묘의 중간 육성단계 위생관리, 백신의 보급 등을 설명하였는데 그 외의 사항을 추가한다면 적절 입식 밀도를 통한 스타트레스 방지, 항생제 대체 물질의 개발과 보급, 어류의 건강도 판정을 위한 혈액검사 기준의 확립, 원인 병명의 새로운 질병 진단 기술의 개발 등을 들 수 있을 것으로 생각된다.
제 2장 수산용 백신의 국내외 개발 현황

◆ 전 세계적으로 최초로 허가된 어류 백신은 1976년 미국에서 메기의 enteric red mouth 질병에 대한 비브리오병(Vibrio anguillarum) 백신이며 현재는 노르웨이, 영국, 미국, 캐나다에서는 은어, 연어과 어류, 차 넬매기 등 주로 양식어종에 대해서 비브리오 백신 등 수십 종의 다양한 백신이 개발되어 사용되고 있다. 여기서는 노르웨이와 일본의 수산용 백신 개발 및 보급 현황에 대해 주로 설명하고자 한다.

제 1절 노르웨이의 수산용 백신 개발 현황

◆ 노르웨이는 백신의 개발 보급을 통해 항생제 사용 저감과 더불어 양식생산량 증대의 모범적 사례로 손꼽히는 경우이다. 1987년 연어과 어류의 비브리오병에 대한 절차백신이 개발 보급되었고, 1993년에는 아주반트(Adjuvant)가 함유된 절창병(Furunculosis) 주사백신이 개발되었다.

그림 2-1 노르웨이에서의 수산용 백신 보급에 따른 대시양어 생산량 증대 및 항생제 사용량 감소

◆ 1995년대는 전염성췌장괴사증 바이러스(Infectious Pancreatic Necrosis) 질병에 대한 재조합백신, 96년에는 6종 및 5종 혼합백신이 개
제 2 장 수산용 백신의 국내외 개발 현황

발되어 양식 현장에 사용되고 있다.

◦ 이러한 백신의 개발과 보급에 따라 1986년 5만 톤이었던 대서양 연어 생산량이 1996년에는 30만 톤으로 6배가 증가하였다. 그러나 항생제 사용량은 1987년에 49톤이었던 것이 지속적으로 줄어들어 1997년에는 0.7톤으로 감소하였다는 결과가 있다.

◦ 노르웨이에서는 대서양 연어의 양식 전 기간 동안 발생하는 질병에 대한 백신 접종 프로그램을 개발하여 양식 현장에 보급하고 있다. 즉, 담수에서 생활하는 치어기에는 전염성췌장괴사증(IPN, Infectious pancreatic necrosis)에 대한 경구백신, 이후에는 Enteric red mouth에 대한 침지와 IPN에 대한 booster 백신 등 판매시기까지 경구, 침지, 주사 등의 방법으로 백신 처리를 하고 있다.

그림 2-2 대서양 연어의 양식과정동안의 백신 접종 프로그램
자료출처: Intervet

제 2 절 일본의 수산용 백신 개발 현황

◦ 농림수산성의 수산용 의약품에관한 조사결과, 방어 및 참돔 등 양식어류의 감염대책이 항균·항생물질을 이용한 치료에서 백신을 사용한 예방으로 옮겨가고 있는 것으로 밝혀지고 있다.

◦ 농림수산성 집계에 따르면 2004년도 백신 판매액은 전년도 대비 7억엔이 증가하였으며 본격적인 조사를 시작한 2000년도(3억 엔)에 비해 4배나 증가 한 반면 항균·항생물질의 사용액(추정)은 전년도 대비 4억 엔이
감소한 15억 엔으로 2000년도(35억 엔) 대비 절반 이상 감소한 것으로 보고되고 있다.

○ 일본 최초의 어류 백신은 1988년에 은어의 비브리오병 불활화백신(침지백신)이 승인되었는데 아래에 일본의 주요 어류용 백신 개발현황을 종류 별로 정리하였다.

1. 은어의 비브리오병 불활성화 백신 (1가 침지백신)

2. 연어과 어류의 비브리오병 불활화 백신 (2가침지백신)
○ 1988년 8월에 미국으로부터 수입 신청, 그리고 같은 해 12월에 일본 내 제조가 각각 무기개송어용으로 승인되었다. 그 후 1992년에 적용 어종이 무기개송어에서 연어와 어류로 확대되어 현재에 이르고 있다.

○ 이 백신은 Vibrio sp.(Vibrio ordalii, 혈청형 J-O-1형) 및 Vibrio anguillarum (혈청형 J-O-3형)을 배양 후 포르말린으로 불활화해서 혼합한 것이다.

○ 혼합 전에 단가백신은 각각 호모주를 이용한 감염실험에서는 유효하지만 다른 혈청형의 주에 대해서는 서로 무효하고, 혼합 후 2가 백신은 어느 주에 대해서도 유효하다는 것이 확인되었다.

3. 방어의 비브리오병 불활성화백신 (1가 침지백신)
○ 비브리오 침지백신은 전술한 것처럼 담수어에서는 오래전부터 그 효과가 알려져 있다. 해산어에서는 담수어와 마찬가지로 오래전부터 비브리오병이 알려져 있지만 침지백신에 대해서는 담수어와 같은 효과를 얻을 수
제 2 장 수산용 백신의 국내외 개발 현황

없어서 실용화된 것은 최근이다.

○ 비브리오병은 도입 초기에 발생하는 경우가 많기 때문에 주사가 흔한 치료에 사용할 수 있는 침지백신의 가치는 높다.

4. 방어의 α용혈성연쇄구균증 불활화백신(1가 경구 및 주사백신)

○ α용혈성연쇄구균증(락토코카스증, Lacotoccus garvieae 감염증)은 방어양식에 있어서 가장 피해액이 큰 질병이고 오랫동안 백신의 개발이 기대되어 왔다.


○ 주사백신과 침지백신에 비교해서 1미양 사용량이 많아서 포장단위가 큰 제품도 있다. 현재 3종류의 제품이 승인되어 있고, 제품별로 대상동물, 용량, 추가 면역의 유무 등이 다르다. 이 제품의 대상 동물은 당초 방어에만 국한되었으나 2006년에는 방어속 어류에도 사용이 확대되었다.

○ 이 백신의 대상인 α용혈성 연쇄구균증은 어병 중에서도 가장 피해가 컸다. 그 때문에 이 백신의 출현은 그때까지 백신에 친숙하지 않았던 많은 양식업자들에게 어병 대책으로서 백신의 사용이 강한 인상을 심는 계기가 되었다.

○ 제약회사의 큰 주목을 받았고 이 백신의 성공은 그 후 수산용 백신의 개발 및 보급 촉진에 큰 공헌을 했다. 전술한 경구백신의 성공에 의해 수산용 백신의 수요는 크게 증가했다.

○ 한편으로 경구백신은 지속기간이 3개월로 짧기 때문에 보다 지속기간이 긴 백신에 대한 기대가 크게 되었다. 이와 같은 배경 속에서 지속기간이 긴 주사백신이 2000년에 승인되었고 급속하게 보급되었다.

5. 이리도바이러스감염증 불활화백신(1가 주사백신)
제 2 장 수산용 백신의 국내외 개발 현황

◦ 참돔이리도바이러스는 참돔을 비롯해 방어, 자주복, 대구, 녕치 등 약 20여 종 이상의 해산어가 감염성을 나타내고 해산어 양식 및 종묘생산의 현장에서 심각한 피해를 유발하고 있다.

◦ 바이러스성 질병에 대해서는 항생물질이 무효하기 때문에 백신의 개발이 강하게 요구되고 있다. 이 백신은 1998년 참돔을 적용 어종으로서 제 조·승인되었고 2000년에는 적용 어종이 방어, 2002년에는 방어 속 어류, 흑점줄전갱이로 확대되었다.

6. 녕치의 β-용혈성 연쇄구균증 불활화백신 (1가 주사백신)


7. 방어 a-용혈성 연쇄구균증 및 비브리오병 불활화백신 (2차 주사백신)

◦ 방어 양식에서는 가장 중요한 질병인 a-용혈성연쇄구균증에 대한 백신에 방어 치어 도입 직후에 유행하는 J-O-3형 비브리오병의 백신을 첨가한 것이다. 비브리오병의 유행에 맞추어 되도록 이른 시기에 투여하는 것이 효과적인데 최초의 제품은 2000년에 제조가 승인되었다.

8. 방어속 어류의 이리도바이러스감염증 및 a-용혈성연쇄구균증 불활화 2가 주사 백신

◦ 참돔이리도바이러스병은 대부분이 당초 참돔에 해당되는 피해였지만 1994년을 경계로 방어나 갯방어에 있어서도 큰 피해가 발생하게 되었다.

◦ 특히 1995년에는 방어류에서 큰 피해가 생겨서 그 피해액은 참돔의 피해 액의 몇 배 이상이 되었다. 이와 같은 상황에 대응해서 참돔이리도바이러스병과 방어류에 가장 큰 피해를 주는 a-용혈성연쇄구균증의 혼합백신
이 개발되었다.

9. 방어 및 젅방어(방어속 어류)의 이리도바이러스감염증, 비브리오병 및 α용혈성연쇄구균증불활화 3가 주사백신
   ○ 방어 양식에서는 주요한 질병으로서 방어 치어 임식 후에 J-O-3형 비브리오병, 수온상승기에 유결절증, 고수온기에 α용혈성연쇄구균증 및 참돔 이리도바이러스병이 발생해서 큰 문제가 되고 있다.

제 3 절 국외 백신관련 기타 사항
   ○ 최근 다국적기업에서 연어릿케치아증후군(SRS, Salmon rickettsial syndrome)에 대한 한 종류의 단가백신(monovalent vaccine)과 SRS, 전염성췌장괴사바이러스(IPN, infectious pancreatic necrosis virus), 전염성연어빈혈병(ISA, infectious salmon anemia), 비브리오병 및 솔방울병(aeromonas) 등에 대한 5가백신(pentavalent vaccines)도 개발하였다는 보고가 있다.
제 4 절 국내 백신 개발 현황

○ 국내의 수산용 백신 개발은 넘치에 대해 주로 이루어졌다. 따라서 넘치의 백신 개발 사항에 대하여 국가 승인을 위주로 아래에 설명하였다.

1. 2003년 국내 수산용 백신 최초 승인(에드와드 침지백신 1가)

○ 국내에서 어류용 백신 개발은 동해안 소상연어의 회귀량 증대를 위하여 방류 치어의 비브리오병 예방을 위한 연어 비브리오 백신이 최초이다. 연어로부터 비브리오병원인 *Vibrio anguillarum*을 분리하여 제조한 포르말린 불활화백신은 1985~1988년까지 방류 연어 치어 1,000만 마리를 처리하였으나, 이 백신은 실험실 규모의 백신 개발 연구에 그쳤다.

○ 실제 산업화 규모 면에서 국내 수산용 백신 개발은 국내의 가장 생산량이 많은 양식어류인 넘치를 대상으로 주로 이루어지고 있는데 국내 수산용 백신 중 첫 번째로 상용화된 백신은 넘치의 에드와드병 침지백신이다.


2. 2006년 연쇄구균병 1가 백신(S. iniae) 승인

○ 에드와드병 침지 백신에 이어 *Streptococcus iniae* 연쇄구균병 백신이 2006년에 승인을 득하고 2007년부터 보급되게 되었다. 이 연쇄구균병 백신이 승인 및 보급됨에 따라 국내에서도 본격적인 수산용 백신 개발과 접종이 이루어지게 되었다고 볼 수 있다.
제 2장 수산용 백신의 국내외 개발 현황

3. 2009년 연쇄구균병 2종 혼합백신 승인

○ 국내의 양식님착의 연쇄구균병원체는 2000년대 초반까지만 하더라도
제 2 장 수산용 백신의 국내외 개발 현황

Streptococcus iniae와로 알려져 있었는데 2000년대 중반 이후에는 오히려 Streptococcus parauberis와의 분리율이 높게 나타나고 있어 이 2종의 혼합백신 개발 필요성이 대두되게 되었다.

○ 2009년에 이 2종의 연쇄구균병에 대한 혼합백신이 국가승인을 득하게 되었고 국가지원 백신 접종 사업에도 이 혼합백신 접종이 많이 이루어졌다.

4. 연쇄구균 및 에드와드 혼합 3가 백신 현장 보급

○ 2010년도에 국내 최초로 연쇄구균 2종과 에드와드백신의 3가 혼합백신이 국가승인을 받게 되었다. 이후 2011년도부터 2014년도까지 대부분의 양식장에서 이 3가 혼합백신이 주로 사용되고 있다. 제조회사에 따라서는 연쇄구균백신 중 S. parauberis의 생물학적 특성을 기준으로 2가지 타입으로 구분하여 각각 백신을 제조하는 경우도 있다.

5. 연쇄구균, 에드와드, 비브리오 혼합 4가 백신 국가 승인

○ 2014년 9월에는 2종의 연쇄구균과 에드와드병 3가 혼합백신에 넘치 치어에 가장 많은 질병 중 하나로 알려진 비브리오병(Listonella anguillarum) 백신이 추가된 4가 혼합백신이 추가로 국가 검정을 통과하였다. 이로써 국내 수산용 백신은 2006년 에드와드병 침지백신의 상용화를 시작한 이래 10년도 안내 비약적인 백신 개발 성과를 거둔 것으로 평가된다.

6. 백신접종 현황

○ 앞서 설명한 것처럼 국내의 수산용 백신 보급은 국가에서 지원 사업 형태로 보급을 시작하였으며 현재도 대부분 지원 사업 형태로 보급되고 있다. 여기서는 제주지역의 백신보급 지원 사업 사례를 들어 연도별 백신 보급현황을 정리하였다.

○ 제주지역에서는 2006년도부터 지속적으로 백신 지원 사업을 수행해 오고 있다. 초장기에는 백신에 대한 불신이나 반대로 백신을 만병통치약으로 이해하여 백신만 접종하면 모든 질병이 다 예방되는 것으로 오해하는 경
우도 있었다.

그림 2-6 양식장에서의 넋치 백신 접종 모습

○ 초장기에는 국가지원 사업에 의한 백신 접종만이 이루어졌으나 최근에는 일부 양식장에서는 자기부담으로 백신을 전 사육 중인 넋지에 접종하는 여건도 늘고 있다. 전체 사육 넋지에 백신접종을 한 양식장 사례를 보면 실제 항생제 사용량이 줄고 있음이 확인되고 있으며, 일부 양식장에서는 1차 접종 후 일정 기간 경과 후 2차 접종을 함으로써 대형어로 커워 출하하는 경우도 있다.

○ 백신 접종 효과를 극대화하기 위해서는 우선 접종 전 질병검사를 통해 건강한 어류를 대상으로 접종이 이루어지는 것이 무엇보다 필요할 것이며, 접종 후에도 건강관리를 위한 사육 관리가 필요하다.

○ 또한 백신 접종 작업 자체가 어류의 입장에서는 스트레스로 작용할 수 있으므로 접종 시 하루에 많은 양을 접종하기 위해 무리하지 말고 1일 접종 마릿수를 적정히 산정하여 최대한 스트레스를 줄이는 방안으로 백신 접종이 이루어져야 할 것이다.
제 2 장 수산용 백신의 국내외 개발 현황

<표2-1> 제주지역 백신 지원 사업에 따른 보급 현황

<table>
<thead>
<tr>
<th>구분</th>
<th>대상 질병</th>
<th>접종 양식장 수</th>
<th>접종 마리수</th>
</tr>
</thead>
<tbody>
<tr>
<td>계</td>
<td></td>
<td>1,777</td>
<td>127,704</td>
</tr>
<tr>
<td>2006</td>
<td>에드와드병</td>
<td>23</td>
<td>2,778</td>
</tr>
<tr>
<td>2007</td>
<td>연쇄구균병</td>
<td>172</td>
<td>5,556</td>
</tr>
<tr>
<td>2008</td>
<td>연쇄구균병</td>
<td>213</td>
<td>11,112</td>
</tr>
<tr>
<td>2009</td>
<td>연쇄구균병</td>
<td>237</td>
<td>17,400</td>
</tr>
<tr>
<td>2010</td>
<td>연쇄구균병</td>
<td>258</td>
<td>26,650</td>
</tr>
<tr>
<td>2011</td>
<td>에드와드병, 연쇄구균병</td>
<td>275</td>
<td>19,978</td>
</tr>
<tr>
<td>2012</td>
<td>에드와드병, 연쇄구균병</td>
<td>301</td>
<td>17,638</td>
</tr>
<tr>
<td>2013</td>
<td>에드와드병, 연쇄구균병</td>
<td>298</td>
<td>26,592</td>
</tr>
</tbody>
</table>

7. 백신의 효율적 이용 방안

○ 최근 수산용 백신 접종 효과가 인정되면서 백신 접종 여건이 늘고 있다. 초창기 백신 보급시기에는 백신 접종에 대한 부정적인 의견들도 일부 있었으나 최근에는 2 kg 급까지 대형 녹치(일명 ‘대광어’)로 양성하고자 하는 양성장에서는 추가 접종을 하기도 한다.

○ 그러나 백신 효과를 제고하기 위해서는 접종 대상 어류가 건강한 상태에서 접종이 이루어져야 하는데 제주지역 예를 보면 대부분의 백신 접종 시기는 약 150 ~ 200 g 전후에서 많이 이루어지는데 이 시기까지는 VHS 와 스쿠타카병이 계속해서 발생하는 시기로 백신 접종을 하고자 하더라도 어류가 건강하지 못한 상태이므로 그 시기를 뛰어 미루게 되어 적정 시기에 접종을 놓치는 경우가 많다.

○ 따라서 질병예방을 위한 대안으로 백신의 지속적 개발과 보급이 중요한데 적정시기에 백신이 접종되기 위해서는 중간 육성단계 건강관리 및 위생관리 기술 개발이 필요하다.
제 2 장 수산용 백신의 국내외 개발 현황

그림 2-7 국내 텔치 육상양식장 내부 전경
제 3 장 새로운 백신의 개발동향

제 1절 백신의 기원

○ 천연두, 마마를 비롯한 몇 가지 감염증에 있어서는 한 번 났고 나면 두 번 다시 걸리지 않는다는 것이 오래전부터 경험적으로 알려져 있다. 또 가벼운 천연두의 두포재료를 사람에게 접종하는 인두접종이 오래전 유럽과 중국에서 이루어졌다.

○ 그러나 안정된 성과를 얻을 수 없었으며, 때에 따라서는 위험을 동반해 야 하기 때문에 정착하지는 못 했다. 현재의 백신 개발로 이어지는 과학적 단서가 열린 것은 18세기 말 영국의 제너였다. 그는 소 짓을 쳤던 여인이 우두에 감염되면 천연두에 걸리지 않는다는 당시의 전설을 입증하여 중두법을 개발했다(1796년).

○ 그리고 100년 후 프랑스의 파스퇴르는 광범위의 병원체를 토끼에게 접종을 반복해서 병원체의 감염력을 약화시키는데 성공하여, 약독광건병백신의 개발에 성공했다(1885년). 파스퇴르는 제너의 공을 칭송하며 암소를 의미하는 라틴어 'vacca'에서 기원한 "vaccine"이라는 단어를 만들었다.

○ 면역이라는 현상이 어떠한 메커니즘에 근거하여 발현하는가에 대한 연구는, 감염증의 배후에 병원체의 존재를 상상하며, 린치(인축공동감염증, 1986년), 결핵(1882년), 콜레라균(1884년)을 시작으로 차례차례로 병원 세균을 발견한 코호의 업적이다.

○ 그의 문하생에 의해 병원체가 생산하는 독소(외피리 등에 의한 디프테리아균의 순수배양 성과 독소의 발견, 1884년)의 작용을 중화하는 물질(베플리과 기타자토에 의한 디프테리아균 항독소의 발견, 1890년) 혹은 병원세균의 균체를 응집시킨 작용물질(Gruber와 Durham에 의한 응집소의 발견, 1896년)이 감염을 경과한 생체의 혈청 속에 존재하는 것이 접차 명확해졌다.
제 3 장 새로운 백신의 개발동향 41

○ 마침내 항독소와 웅집소 뿐만 아니라 병원체 혹은 그 생산물에 어떠한 작용을 미치는 물질이 감염 후의 생체 혈청 속에서 출현한가 밝혀졌고, “항체”라 불리게 되었다.

○ 이에 대해 항체생산의 유인이 되는 물질은 “항원”이라 명명되었다. 이처럼 19세기의 후반에 미생물학, 혈청학 혹은 면역학이라고 하는 현재 백신 개발의 배경이 되는 학문의 기초가 마련되었다.

○ 천연두에 대해서는, 제너의 두창백신의 철저한 사용에 의하여 지구상에서 자취를 감추었습니다. 특히 화학요법제에 의한 예방, 치료가 어려운 바이러스를 원인으로 하는 감염증의 최대 무기가 된 것이 백신이다.

○ 백신은 사람과 동물을 감염으로부터 지킬 뿐만 아니라, 감염증 그 자체를 구제하는 효과가 있다. 이처럼 예방의학 차원에서의 백신의 기여는 크고, 다수의 중요한 감염증은 백신에 의해서 방제할 수 있게 되었다.

제 2 절 백신의 종류

○ 백신에는 배양한 병원체를 포르말린 등으로 죽여서 만든 사균백신(바이러스는 ‘죽인다’라는 말이 적당하지 않기 때문에 ‘불활화’라고 한다)과 배양한 병원균이 생산하는 독소를 불활화해서 만든 toxoid, 병원체를 키워서 병원성을 잃어버린 약독(弱毒) 생백신이 있지만, 두 가지를 총칭해서 불활화백신이라고 한다. 따라서 백신은 불활화백신과 생백신의 두 종류로 크게 나눈다(표 3-1). 이 2종류는 효과, 부반응 모든 면에서도 차이가 있다.

○ 면역효과 측면에서 보면 불활화백신은 단 기간밖에 지속하지 않기 때문에 반복해서 접종을 해야 할 필요가 있으며 일반적으로 혈류 중에서만 항체를 만든다. 또한 면역을 유도하기 위해서는 대량의 항원을 투여하지 않으면 효과가 없기 때문에 접종된 경우에는 독이 없이 allergen으로서 작용하는 경우가 있고 발열과 쇼크 등을 일으킬 가능성이 있다.

○ 이에 비해, 생백신은 숙주 체내에서 증식하기 때문에 미량의 접종으로 충분한 효과가 있으며, 또한 자연감염의 경우와 같이 장기간에 걸쳐 지
제 3장 새로운 백신의 개발동향

속하는 항체를 만들어낼 수 있다. 더욱이 polio vaccine의 경우 장관면역과 같이 세포성 면역, 국소면역을 유도하는 것을 할 수 있다.

○ 따라서 백신으로서는 생백신이 더 뛰어나다고 할 수 있지만 동연변이에 의한 병원성 복귀도 생각될 수 있어 안전성의 면에서 문제가 있다. 그러나 유전자공학적 기법에 의해 제조한 세균과 바이러스에 항원을 코드하는 유전자를 삽입하여 생 백신을 만드는 것이 가능하다면 이러한 문제는 해소될 것이다.

○ 백신 중에서 방어면역을 유도할 때에 표적이 되는 단백질 성분 요소를『감염방어항원』이라 부르며, 그 속에서 본질적인 효능성분만을 함유한 백신을『subunit 백신』이라 부른다.

○ 백신 개발을 목적으로 하여 종래 이용되어 온 세균의 감염방어항원에는 크게 나누어서, 세균이 만들어내는 단백질 독성을 중심으로 한 균체 구성성분과 사균을 중심으로 한 전균체가 있다.

○ 전자의 예로서는, diphtheria와 파생품의 toxoid 및 component vaccine가 있으며, 감염방어항원으로서의 위치가 매우 명확하다. 그에 비해, 세균의 전균체 백신의 감염방어항원으로서의 평가는 낮으며, 감염 방어능력이 높은 백신은 BCG 등의 예외를 제외하고 개발되어 있지 않다.

○ Typhus균과 콜레라균에 있어서 병원성의 면역원성은 세포벽 리포다당류(LPS)와 밀접하게 관계해 있으며, 이것이 감염방어항원으로서 중요하다는 것이 알려져 있다.

○ 감염방어항원을 코드한 유전자를 분리하여, 효모, 대장균, 동물 세포 등에 삽입하여 제작한 조합단백질을 제조한 subunit vaccine이라 부른다. 일본에서 개발한 사람의 B형간염 백신은 세계에서 최초로 개발에 성공한 제조한 subunit vaccine이다. B형간염바이러스는 실험관 내에서 대량으로 증식하는 것이 어렵고, 이제까지 감독 감염한 사람의 혈액에서 바이러스를 정제해왔다.

○ Subunit vaccine의 경우에는, 이와 같은 감염성의 혈액을 취급하는 위험
도 없고, 대량으로 항원을 얻을 수 있다는 이점이 있다. 그러나 일반적으로 면역원성이 약하고, 세포성 면역의 유도가 약하다는 약점을 가지고 있다.

<표3-1> 불활화백신과 생백신 비교

<table>
<thead>
<tr>
<th>백신의 종류</th>
<th>이점</th>
<th>단점</th>
</tr>
</thead>
<tbody>
<tr>
<td>불활화 백신</td>
<td>감염이 일어나지 않기 때문에 임상반응이 없음</td>
<td>여러 번 접종할 필요가 있을 접종 직후 부작용이 나오기 쉬움 세포성면역, 국소면역의 성립이 약함</td>
</tr>
<tr>
<td></td>
<td>감염원이 되지 않음 면역능력이 저하한 사람, 임산부에도 접종할 수 있음</td>
<td>대량 항원이 필요하기 때문에 고가 입</td>
</tr>
<tr>
<td>생백신</td>
<td>1회 접종으로 장기간 지속할 강한 면역을 얻을 수 있음 세포성면역, 국소면역의 성립을 얻을 수 있을 광범한 접종에 의해 전달 고려 점단 가능</td>
<td>백신병원체의 감염증상(임상반응)이 있음 백신병원체를 배출하는 경우가 있음 병원성이 복귀할 위험성이 있음</td>
</tr>
<tr>
<td>Toxoid</td>
<td>부작용이 현저히 경감됨</td>
<td></td>
</tr>
<tr>
<td>Subunit vaccine</td>
<td>불활화백신의 이점에 더하여, 부작용이 현저히 경감됨 병원체를 배양할 필요가 없고, 항원의 대량생산이 가능</td>
<td>면역원성이 약함 세포성면역의 유도가 약함</td>
</tr>
</tbody>
</table>

제 3 절 백신 투여방법

- 현재 사용되고 있는 수산용 백신의 투여방법은, 주사법, 침지법, 경구법 중 3종류가 있다. 표 3-2에 각 투여법 특징을 정리하였다. 현재는 유효성이 가장 중시되어, 주사법이 가장 많이 사용되고 있다.

- 그러나 앞으로 연구가 진행되어 보다 효과가 높은 백신(침지법이나 경구법에서도 충분히 효과가 있는 백신)이 개발된다면, 인간의 노력도 물고 기가 있는 스트레스도 적은, 경구백신이 주류가 될 것으로 생각된다. 또 침지백신은 먹이불임 이전 또는 먹이불임증인 치어나 유어에게 이용하는 것이 기대된다. 이 장에서는 먼저 모든 투여법에 공통적인 백신의 "사용
상 주의"에 대하여 설명하고, 다음으로 각 투여법에 대하여 설명하고자 한다.

<표3-2> 백신의 각종 투여법 특징

<table>
<thead>
<tr>
<th></th>
<th>주사법</th>
<th>점지법</th>
<th>경구법</th>
</tr>
</thead>
<tbody>
<tr>
<td>대상으로 하는 질병</td>
<td>많다</td>
<td>적다</td>
<td>적다</td>
</tr>
<tr>
<td>유효성</td>
<td>높다</td>
<td>중간</td>
<td>낮다</td>
</tr>
<tr>
<td>Adjuvant의 종류</td>
<td>많다</td>
<td>적다</td>
<td>적다</td>
</tr>
<tr>
<td>처리속도(노동력)</td>
<td>느림</td>
<td>조금 빠름</td>
<td>빠름</td>
</tr>
<tr>
<td>작업자의 사고 가능성</td>
<td>있음</td>
<td>없음</td>
<td>없음</td>
</tr>
<tr>
<td>어류의 스트레스</td>
<td>콕</td>
<td>적음</td>
<td>없음</td>
</tr>
<tr>
<td>자기어의 투여</td>
<td>불가능</td>
<td>쉽다</td>
<td>초기에는 불가능</td>
</tr>
<tr>
<td>백신 필요량</td>
<td>소량</td>
<td>많다</td>
<td>많다</td>
</tr>
<tr>
<td>백신 투여량</td>
<td>정확</td>
<td>조금 부정확</td>
<td>부정확</td>
</tr>
</tbody>
</table>

1. 주사법

○ 주사 백신은 주사기에 의해 직접 어체 내로 주입된다. 어류는 물에서 꺼내어 공기 중에서 질식의 위험에 노출될 뿐만 아니라, 사람의 손에 압박되면서 절역이나 비늘이 멀어지게 된다. 더욱이, 주사바늘에 의해 어체에 상처가 생긴다.

○ 이와 같은 주사법은 어류가 받는 스트레스가 큰 방법이며, 작은 어류에 투여하는 데에는 사용할 수 없다. 또 1 미치 처리하기 때문에, 무리 단위로 처리하는 데에는 양식 업자에게 막대한 노동력이 요구된다. 더욱이 연속주사기나 관련된 전용 기기류를 필수로 하며, 잘못하여 주사바늘을 자신이나 타인을 찔러서 상처를 입힐 위험성도 있다.
제 3 장 새로운 백신의 개발동향 45

 nghiêm 백신의 효과 면에서 보면, 주사법은 현재 가장 뛰어난 투여방법이다. 이 방법은 투여량이 정확하기 때문에 효과가 흥일하게 나타난다. 또한, 백신이 어체 내에 확실하게 들어가기 때문에 소량으로 효과가 나타나기 때문이라고 생각된다.

게다가 주사법에서는 adjuvant라고 불리는 면역증강제의 첨가에 의해 더욱 효과를 증강하는 것이 가능하다. 실제로 류결까지증이나 결장병 백신에서 adjuvant없이는 실용적으로 유효성을 얻을 수가 없다.

2. 침지법

침지법은, 백신액 속에 어류를 침지시킴으로서 백신을 투여하는 방법으로, 1976년에 개발되었다. 어류에게만 적용되는 특유한 백신 투여방법이다. 백신은 체표나 아가미 등으로부터 체내로 들어가게 된다.

가용성 항원(수용성 성분)은 침지 처리 중에 주로 피부나 아가미에 흡수되어, 몇 시간에 걸쳐서 양 기관으로부터 혈액을 통해 체신, 두신, 비장 및 2차혈관계로 운반되는 것으로 추정되고 있다.

한편, 입상 항원(불용 성분)은 피부의 미세한 창상인 「생채기」부분에 부착한 후, 창상 치유과정(상처가 아무리 과정)에서 유주성의 상피세포에 의해 흡수되는 것으로 추측된다. 또한, 침진 투여된 항원의 주요한 흡수부위를 장이라고 주장하는 보고도 있다.

주사법과는 달리, 침지법으로 면역하면 대부분의 경우 항원에 대한 혈중 항체가의 상승이 검출되지 않거나, 검출되더라도 아주 낮다. 한편, dos Santos 등은 적어도 농어의 유결질증 침지백신에 대해서는 아가미에 있어 체액성 국소면역이 큰 역할을 하고 있는 것으로 보고되고 있다.

이 투여방법은 어류를 가두러나 못 등에서 들어 올릴 필요가 있지만 큰 용기만 있으면, 한 번에 다수의 어류 처리가 가능하고 무리로 관리하는 양식어류에 적용할 수 있다.

특히 치어 등의 크기가 작은 어류에 대한 투여에 용이하다. 유 효성은 주
새로운 백신의 개발동향

사법에 비해 떨어지지만, 비브리오병 등에서는 충분한 유효성이 인정되어 실용성이 높다. 몰 밖으로 들어 올린 어류에 백신을 뿌리는 스프레이법이나 샤워법 등도 침지법의 일종으로 생각되지만 실용화된 예는 없다.

- Amend and Fender가 개발한 당시의 방법은, 어류를 고장액에 침지시켜서 백신액에 침지를 하는 방법(2액법), 혹은 백신액 그 자체를 고장하는 방법(1액법)이 있다. 이들 고장침지법은, 어체 내로 흡입되는 항원량이 많은 반면, 어체 받는 스트레스도 큰 나머지 보급되지 않았다.

- 그 후 연어과 어류의 비브리오병에서, 고장처리를 보완한 직접 침지법 (direct immersion method)에 의해서도 효과가 있음을 확인하였고, 보다 간편하게 그리고 어체에 맑한 스트레스를 주지 않고 백신을 처리할 수 있게 되었다. 현재 수산용 백신의 투여방법으로서, 이 직접 침지법이 널리 이용되고 있다.

- 일본에서도, 은어의 비브리오병에 대해서 침지법의 효과가 보고되었고 1988년에는 일본 최초의 수산용 시판백신으로서, 직접 침지법이 투여방법으로서 「은어의 비브리오병 불활화백신」이 승인되었다. 여기에 현재에는 「연어과 어류의 비브리오병 불활화백신」과 「방어의 비브리오병 불활화백신」이 침지백신으로 시판되고 있다.

- 침지 투여된 항원의 접촉량에 영향을 주는 요인으로서, 이세까지 ①백신액의 항원농도, ② 백신액의 염도, ③Adjuvant의 첨가, ④침지 시간, ⑤수온, ⑥마취 처리 등이 보고되었다. 이중 실제 백신 투여에 있어, ①백신액의 항원농도, ④침지 시간, ⑤수온이 가장 중요하다고 여겨진다.

- 정량적인 실험에서 혈액 속으로 가용성 항원의 투입량은 항원액의 농도에 비례하여 침지 시간의 제급근에 비례하며, 또한 어체 내에 투입되는 입상(粒状) 항원량은 항원액의 입자농도 및 침지시간에 비례하는 것이 보고되었다.

- 수온에 대해서는 연어과 어류에 비브리오백신을 침지 투여한 경우, 14℃ 에 비해 10℃에서 방어능의 발현이 늦고, 또한 4℃에서는 침지 후 1개월 이 지나도 방어능이 발현되지 않았음이 보고되고 있다.
제 3 장 새로운 백신의 개발동향

3. 경구법

○ 이 투여법은 백신을 입을 통해 먹어서 투여하는 방법이다. 투여된 백신은, 입에서 위를 통과한 후, 장에서 흡수되어 효과를 발휘한다고 여겨진다. 백신을 먹이에 섞어서 투여하기 때문에, 대부분의 크기의 어류에 투여할 수 있다.

○ 또 어류를 굽는 필요가 없기 때문에, 어류에 스트레스를 주지 않을 수 있고, 노동력도 거의 필요 없다. 더욱이, 새로운 기기류가 필요하지 않는다는 이점도 있다. 이와 같은 경구법은, 어류양식에는 이상적인 투여 방법이라고 할 수 있다.

○ 하지만 효과적 측면에서는 주사법에 한참 떨어지는 경우가 많으며, 이것 이 경구법의 최대 취약점이다. 입으로 백신을 투여한 경우보다, 향문에서 장으로 백신액을 투여하는 쪽이 효과가 높다고 알려져 있다.

○ 이러한 이유로 경구백신의 유효성이 낮은 것은, 장에서 흡수되어야 할 백신의 유효성분이 위산하거나 위의 소화효소 (pepsin)로 변성, 혹은 분해되어 소실되었기 때문이라고 생각된다.

○ 위에서의 소화를 방지하기 위하여, 백신액을 위 (산성의 상태)에서 녹기 어려운 막으로 코팅하거나, 마이크로캡슐에 넣어서 투여하는 방법이나, 불에 녹기 어려운 막을 쌓워서 용해되는 대기의 시간을 연장하는 것으로 미분해 백신을 장까지 도달시키는 방법이 고안되었지만 아직 실용화되지 않았다.

○ 또 개체 간에 섭취량이 다르기 때문에, 백신의 섭취량이 개체마다 크게 달라서, 결과적으로 백신 효과의 편차가 생긴다는 약점도 있다. 시험되는 경구백신은 「방어 또는 방어과 어류의 a용혈성 연쇄구균 불활화백신」뿐이다.
제 3 장 새로운 백신의 개발동향

○ 이 백신은 불활화사균체를 그대로 사용하는 것으로, 유효성을 높이기 위해, 투여는 1회가 아닌 5일간의 연속투여로 정해져있다. 경구투여를 위해서는 필요로 하는 노동력은 적기 때문에, 연속투여는 현실적이지만, 다른 백신이 필요하게 된다.

제 4 절 수산용 백신 개발에 있어 문제점과 대책

1. 새로운 백신개발 동향

○ 최근 수산용 백신 개발에 있어서도 기존의 불활화백신 이외에도 Subunit 백신, 재조합생백신, 펩타이드백신, DNA백신 등 다양한 제형의 백신 개발이 진행되고 있다(표 3-3).

○ 아직까지 실용화 및 산업화를 위해서는 선결해야할 문제점들이 많이 있지만 일부 국가에서는 Subunit백신 및 DNA백신에 대해서는 수산용으로 시판을 허용하고 있다.

<표3-3> 어류에 있어 바이오테크놀로지를 이용한 백신

<table>
<thead>
<tr>
<th>백신의 종류</th>
<th>항원</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subunit vaccine</td>
<td>IPN-VP2, IPN-NS, IPN-VP3, IHN-G, IHN-N, VHS-G, Ichthyophthirius multifiliis</td>
</tr>
<tr>
<td>유전자재조합생백신</td>
<td>IHN-G, VHS-G, IPN-polyprotein을 Aeromonas salmonicidat나 Yersina ruckeri의 약독주에 삽입한 것</td>
</tr>
<tr>
<td>병원성유전자결손백신</td>
<td>Aeromonas salmonicida, Aeromonas hydrophia, Yersina ruckeri</td>
</tr>
<tr>
<td>Peptide vaccine</td>
<td>IHN-G, VHS-G, VHS-N</td>
</tr>
<tr>
<td>DNA vaccine</td>
<td>IHN-G 등</td>
</tr>
</tbody>
</table>

1.1. Subunit 백신

○ 백신으로서 병원체 전체를 사용하는 것이 아니라, 면역원성을 가지고 있
제 3 장 새로운 백신의 개발동향 49

는 단백질 부분(감염방어항원)만을 이용한다. 다시 말해 감염방어항원을 code하는 유전자를 발현용 plasmid vector와 결합해서 대장균이나 효모를 이용하여 발현시켜 이 유전자제조단백질을 정제한 것이다.

○ 사람에서는 B형 감염바이러스의 HBs항원을 대장균이나 효모를 이용해서 발현시키는 것이 백신으로서 이용된다.

○ 어류에 있어서는, IPN의 VP2단백질을 이용한 subunit백신이 노르웨이에서 시판되고 있다. IHN이나 VHS 등 rhabodovirus에 대해서는, 바이러스의 당단백질(G단백질)이 감염방어항원으로서 알려져 있다.

○ IHN바이러스의 G단백질에 대한 subunit백신이 개발되어, 실험실 수준에서 유효하다고 알려져 있지만, 백신으로서 대량생산에는 기술적 과제가 남아있어 아직 시판되고 있지 않다.

○ 또 VHS바이러스의 G단백질을 이용한 백신에 대해서는, 실험실 수준에 있어서도 유효성이 인정되지 않겠지만 백신으로서 대량생산에는 기술적 과제가 남아있어 아직 시판되어 있지 않다. 하지만 기술 개발에 대한 기대가 높아 많은 연구가 진행되고 있다.

1.2. 유전자조합백신

○ 이미 안전성이 확인된 vector(바이러스나 세균의 약독주)에, 다른 바이러스나 세균의 감염방어항원을 code하는 유전자를 삽입하여 발현시켜 백신으로서 사용하는 것이다. 즉 vector로서 이용한 바이러스나 세균과 함께 삽입한 외래 바이러스나 세균에 대한 면역도 함께 유도된다.

○ 사람의 경우 천연두의 백신으로서 이용되어온 vaccinia vaccine(VV)을 vector로 해서, 인간면역결핍바이러스(HIV), 인간T세포백혈병바이러스−I (HILV−I ), 단순 herpesvirus(HSV), 광견병바이러스, 소백혈병바이러스, 닭의 Marek’s disease를 시작으로 대부분의 바이러스병에 대한 백신이 개발되었다. 또 약독 typhus균이나 BCG 등을 vector로 한 세균 vector도 개발되었다.

○ 이 백신의 장점으로는 복수의 바이러스나 세균의 유전자를 삽입할 수 있고, 다가 백신으로 사용할 수 있는 점이다. 또 vector로서 살아 있는 바
제 3 장 새로운 백신의 개발동향 50

이러스나 세균을 이용하기 때문에 생백신과 마찬가지로 체액성 면역뿐만 아니라 세포성 면역을 유도할 수 있다.

○ 어류에 있어서도 결핵병의 원인균인 Aeromonas salmonicida의 약독주에 IHN이나 VHS의 감염방어유전자를 삽입한 생백신의 개발이 이루어지고 있다.

1.3. 병원성유전자 결손백신

○ 종래 수세대에 걸쳐 사육하면서 변이시킴으로써 약독화한 세균이나 바이러스주가 제작되어왔다. 이것에 대해서 병원성유전자결손백신은, 분자생물학적기법에 의해 병원성을 발휘하는 부분만을 제거한 백신이다.

○ 세균은 바이러스에 비해 genome 크기가 크고, 복수의 감염방어항원을 가지고 있는 경우가 많다. 이와 같은 경우에는, 일련의 감염방어항원만을 발현시키는 것보다, 병원성에 관한 유전자를 제거하는 쪽이 효율이 좋다.

○ 어류에 있어서는, 결핵병의 원인균인 A. salmonicid(6), 운동성Aeromonas중의 A. hydrophila(7) 및 레드마우스병의 Yerinia ruckeri(8)에 있어, aroA유전자를 변이시켜 병원성을 잃은 약독주가 개발되어, 이들 약독백신의 높은 유효성이 보고되고 있다.

1.4. DNA백신

○ CMV(cytomegalovirus)등 전사promotor를 포함한 발현vector에 감염방어 유전자를 삽입하여 이 plasmidDNA를 직접 동물에게 접종하면, 숙주동물의 세포에 의해 감염방어유전자가 발현한다.

○ 숙주의 세포를 이용하여 항원을 발현시키기 때문에 생백신처럼 강한 세포성면역을 유도할 수 있으며, 또한 생백신 투여시 염려되는 병원성의 복귀에 대한 우려가 없다.

○ 이와 같은 DNA백신은 생백신의 장점과 안전성이라는 peptide vaccine의 장점 양쪽을 다 갖추고 있어 항성의 편의성, 안전성, 경제성 등 많은 면
제 3 장 새로운 백신의 개발동향

에서 종래의 백신보다 뛰어난다.

○ 어류의 경우에도 근육내에 주사한 luciferase 유전자가 적어도 2년간 발현을 계속하는 것으로 보고되었다. 만약 이들 plasmid DNA가 숙주세포내의 염색체에 삽입되거나, 복제가 되면 유전자재조합동물이 되어버려서, 야외에서의 사용이 곤란하게 된다.

○ 현재 이 염색체 삽입의 가능성을 거의 없는 것으로 보고 있으나 완전히 부정할 수 있는 충분한 데이터가 없으며 이 점을 극복할 필요가 있다.

○ 또한 어류의 IHN이나 VHS에 있어 DNA vaccine의 개발이 시도되었고, 2005년에 캐나다에서는 연어과어류의 IHN에 대한 DNA vaccine가 승인되었다(Apex-IHN, Novartis Animals Health계열의 Aqua Health Ltd. Canada).

○ 이것은 미국에서 말 West Nile fever에 대한 DNA Vaccine(West Nile-Innovator DNA, Fort Dodge Animal Health)과 더불어, 세계에서 최초로 승인된 DNA vaccine이다.

○ IHN에 대한 DNA vaccine는 현재 캐나다 British Columbia주의 특별히 제한된 구역 내에서 대규모 야외실험이 실시되었다. 우려되었던 숙주 세포내 염색체로의 삽입 가능성의 어려한 조치(기업비밀)에 의해 해결되었다고 생각된다.

○ 이상 기술한 IHN이나 VHS이외에도 현재 많은 질병에 대한 DNA vaccine의 개발이 진행되고 있으며 또한 환경이나 어류의 건강에 미치는 영향에 대해서도 논의가 이루어지고 있다.

1.5. Ribosome Vaccine

○ 수산용 백신의 경구투여법은 백신 투여로 인해 어류에 대한 스트레스나 노동력적인 측면에서도 뛰어난 방법이긴 하지만, 위산이나 소화효소에 의해 항원성을 잃어버리는 일이 많아서 일반적으로 백신의 유효성이 낮은 것으로 여겨져 왔다.
제 3 장 새로운 백신의 개발동향 52

○ 하지만 최근 유용한 drag delivery system(DDS)으로서 ribosome가 주목 받고 있다. 이는 바이러스나 세균의 면역여성을 ribosome막내 혹은 ribosome 안에 삽입하여, 경구투여를 통해서 감염 방어 효과가 인정된다 는 보고가 의학이나 수의과 분야에서 보고되었다. 인플루엔자나 암에 대한 백신 개발에 있어서도 ribosome vaccine가 주목받고 있다.

○ 이류의 경우에도 BSA를 ribosome에 삽입해서 경구투여한 결과 장관에서 항원 삽입량과 항체 생성이 축진되고 계양병의 원인균인 Aeromonas salmonicida의 초음파처리 항원의 경우 공격 실험에서는 뚜렷한 효과가 인정되지 않았지만 항체가의 상승과 증상의 경감을 확인했다는 보고가 있다.

○ 최근 일본 삼대 연구팀에 의하면 Aeromonas hydrophila나 잉어 herpes virus(KHV) 항원도입 ribosome의 경구투여에 의해 유의적인 면역효과를 얻을 수 있었다는 보고가 있다.

○ 또한 이들 보고에서는 무위어(無胃魚)인 잉어가 사용되었다. 대부분의 양식어류는 유위어(有胃魚)인 점을 고려하면 앞으로 ribosome vaccine가 유위어에서도 유효한지에 대해서 검토할 필요가 있다.

○ Ribosome 이외에도, 젤라틴 등을 재료로 한 microcapsule에 항원을 집어 넣어서 장에 도달한 후에 녹을 수 있도록 한 장용성 microcapsule을 이용한 경구백신의 개발도 시도되고 있다.

○ 잉어 낱수병백신을 장용성 microcapsule에 넣어서 5일간 연속 경구투여를 14일 간격으로 반복투여한 후, 최초 투여 28일 후에 혈중 응집항체가 를 조사한 결과, 모든 개체에서 항체가의 상승이 확인되었다고 한다. 또 이 잉어 낱수병백신을 경구투여한 후에 생균을 이용하여 공격 실험을 한 결과, 무처리 대조군에 비교하여 퇴사율이 유의적으로 낮았다는 보고가 있다.

1.6. 점막백신

○ 최근 사람에 있어, 채표면(점막면)과 체내(전신계) 양쪽에 면역을 유도
한 텍스트레더로 “접막백신”이 주목받고 있다. 접막면역 시스템은 호흡기나 소화기에서 발달하고 이 경로를 이용한 “돌이마시거나” 또는 “먹는” 백신이다.

<표 3-4> 어류에 있어 DVNA백신의 개발현황
*출처: 제3회 어류백신 국제심포지엄 Dr. Hastein 강연을 바탕으로 작성

<table>
<thead>
<tr>
<th>백신제명</th>
<th>감염방어유전자</th>
<th>이종명</th>
<th>투여법</th>
<th>방어효과</th>
</tr>
</thead>
<tbody>
<tr>
<td>감염성조혈기괴사증(IHVN)</td>
<td>G단백질</td>
<td>무지개송어, 대서양연어</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>IHNV</td>
<td>G단백질</td>
<td>무지개송어</td>
<td>목강내주사</td>
<td>없음</td>
</tr>
<tr>
<td>IHNV</td>
<td>N, P, M, NV단백질</td>
<td>무지개송어</td>
<td>근육내주사</td>
<td>없음</td>
</tr>
<tr>
<td>IHNV</td>
<td>SVCV-G단백질</td>
<td>무지개송어</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>바이러스성 출혈성패혈증 (VHSV)</td>
<td>G단백질</td>
<td>무지개송어</td>
<td>목강내주사</td>
<td>없음</td>
</tr>
<tr>
<td>VHSV</td>
<td>N단백질</td>
<td>무지개송어</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>잎어물바이러스혈증(SVCV)</td>
<td>G단백질</td>
<td>잎어</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>닭치Ladovirus병(HIRRV)</td>
<td>G단백질</td>
<td>닭치</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>전염성비장관외사증(IPNV)</td>
<td>대서양연어</td>
<td>근육내주사</td>
<td>있음</td>
<td></td>
</tr>
<tr>
<td>대서양(AHNV)</td>
<td>VHSV-G단백질</td>
<td>타못</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>AHNV</td>
<td>G단백질</td>
<td>타못</td>
<td>근육내주사</td>
<td>없음</td>
</tr>
<tr>
<td>전염성전염성혈증(ISAV)</td>
<td>SVCV-G단백질</td>
<td>대서양연어</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>ISAV</td>
<td>핵단백질</td>
<td>대서양연어</td>
<td>근육내주사</td>
<td>없음</td>
</tr>
<tr>
<td>아메리카메기의바이러스(CCHV)</td>
<td>7유전자</td>
<td>아메리카메기</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>참돔이리도바이러스병(RSIV)</td>
<td>SVCV</td>
<td>참돔</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>(LCDV)</td>
<td>G단백질</td>
<td>참돔</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>세균성산염병(BKD) Renibacterium salmoninarum</td>
<td>P57</td>
<td>무지개송어</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>비브리오혈부 Vibrio anguillarum</td>
<td>OMP 38유전자</td>
<td>아시아대구, Lates calcarifer</td>
<td>근육내주사</td>
<td>있음</td>
</tr>
<tr>
<td>Mycobacteria증</td>
<td>Ag58A유전자</td>
<td>목강내주사</td>
<td>악간</td>
<td></td>
</tr>
<tr>
<td>Aeromonas증Aeromonas veronii</td>
<td>OMP38, 48유전자</td>
<td>근육내주사</td>
<td>악간</td>
<td></td>
</tr>
<tr>
<td>Piscirickettsia Piscirickettsia salmonis</td>
<td>윤연어</td>
<td>근육내주사</td>
<td>악간</td>
<td></td>
</tr>
<tr>
<td>백설병Ichthyophthirius multifilis</td>
<td>표면항원</td>
<td>아메리카메기</td>
<td>근육내주사</td>
<td>없음</td>
</tr>
</tbody>
</table>

- 인플루엔자는 바이러스가 비강·후두 및 기관지 등의 기도 상피세포에 감염해서 증식한다. 그래서 기도(気道) 접막면역에 있어 중요한 역할을 하는 특이적인 IgA항체를 유도하고 최초 감염시에 바이러스의 증식을 저지·배제함과 동시에 감염의 성립을 방해하도록 하는 것이다.
제 3 장 새로운 백신의 개발동향

○ 어류는 몸 전체가 점막으로 덮여져 있기 때문에 의학적으로 점막백신의 개발이 어류 백신의 개발에 응용할 것으로 기대되며 국내 연구진에 의해 응용연구가 진행되고 있다.

2. 수산용 백신에 대한 현장요구

○ 수산분야에 있어서도 백신의 효과와 개발에 대한 긍정적인 반응 속에서 도 백신의 가치가 명확히 확인되지 않는 경우에는 현장 보급에 어려움이 있다. 따라서 현장에서 필요로 하는 백신의 조건으로는 ①매년 반드시 발생하는 질병일 것, ②피해량이 클 것, ③약제 투여에 의한 치료가 곤란한 점 등이 있다.

2.1. 지속성이 긴 백신

○ 방어의 α용혈성연쇄구균증 백신은 적어도 2년간 유효하고, 지속성이 길다. 그 때문에 방어 처리기에 집중하면, 출하할 때까지 거의 무 투약으로 처리할 수 있다. 이와 같이 효능의 지속성이 긴 백신이 이상적이다.

○ 지속기간이 3개월간과 6개월간인 경우, 질병이 따라서는 효과를 보지 못한 것도 있다. 예를 들어 넼치의 β용혈성연쇄구균은, 해면양식의 경우, 2년째 여름에 다발한다. 2년째 여름에 1.5kg 사이즈로 출하하도록 사육하면, 1.2~1.3kg 정도에서 반드시 이 질병이 발생한다.

○ 따라서 출하 직전에는 투약할 수 없기 때문에 질병이 확산되기 전에 예정보다 작은 사이즈에서의 긴급 출하하는 사태가 된다. 만약에 넼치의 β용혈성 연쇄구균증 백신이 방어의 α용혈성 연쇄구균증 백신과 같은 정도의 지속성이 있다면 1.5kg 사이즈의 넘치를 예정대로 높은 가격으로 판매할 수 있게 되어 경영안정에 도움을 줄 것이다.

○ 넘치의 새로운 연쇄구균증(Streptococcus paraberius 감염증)과 복수증(에드와드증), 참돔의 에드와드증 등은 연중 발생하여 출하 사이즈의 어류까지 피해를 주는 질병이기 때문에 수 개월간의 지속성으로 유효하다고 할 수 없다. 최소 1년간 이상 효과의 지속이 기대된다.
제 3 장 새로운 백신의 개발동향

○ 유효기간이 짧으면, 백신으로 승인된다고 하더라도 질병의 특성을 고려해서 개발하지 않으면 보급은 어렵다. 이와 같은 이유로 국내에서도 adjuvant를 함유한 oil base vaccine에 대한 연구가 진행 중에 있다.

2.2. 저렴한 백신

○ 아무리 좋은 백신이라도 생산비용에 맞추지 않으면 실제로 양식 현장에서 보급하기가 어렵다. 가장 이해하기 쉬운 사례는 일본의 참돔 이리도바이러스 감염증 백신이다.

○ 이 백신의 단가는 1미당 30엔으로 1미당 50~60엔의 종묘에 투여하기에는 체산성이 맞지 않는다. 1미당 30엔을 백신 대신에 종묘의 추가 구입에 활용하면 1만미의 종묘의 경우, 5천미를 추가 구입할 수 있다.

○ 추가 구입 후에 참돔이리도바이러스병에 의해 종묘의 30%가 폐사할더라도 1만 500미의 종묘가 남기 때문에 백신을 구입하는 것보다 종묘를 그 만큼 구입하는 쪽이 생산비용을 절감시킨다. 만약 참돔이리도바이러스병이 미발생하거나 발생에 의한 피해가 수%인 경우에는 백신을 사용하지 않는 쪽이 훨씬 경비를 줄일 수 있다.

2.3. 대상어의 제한없는 백신

○ 현재 수산용 백신은 그 사용 대상 어종이 명확히 정해져 있다. 해산어류에서는 방어, 채방어, 방어속(방어, 채방어, 부시리), 참돔, 흑점줄전갱이, 녹치만이 각각 승인된 백신만을 사용할 수 있다. 그 밖의 양식어장에서는 연일 해당질병이 발생해도 사용할 수 없다. 이것은 양식 현장에 있어 매우 큰 문제이다.

○ 방어속 α용혈성연쇄구균증: 백신이 보급되면서 발생은 큰 폭으로 감소했다. 그러나 이 질병은 같은 양식장에서 사용되는 참전갱이나 고등어, 취치 등에서 급증하고 있다.

○ 녹치β용혈성연쇄구균증: 녹치이외의 흑점줄전갱이, 취치류에서 빈번하게 발생해서, 말취처에서는 가장 심각한 질병이 되고 있다. 또 취치류처럼
시장의 규모가 작은 양식에서는 사용할 수 있는 치료약도 거의 없고 방치할 수밖에 없는 상황도 많다.

- 참돔 이리도바이러스병: 대부분의 양식어에 감염되며 발병한다. 특히 강담돔이나 돌돔의 피해는 커서 매년 발생하며 전염하는 경우도 많다. 이 때문에 이리도바이러스감염증백신은 현장에서는 참돔 보다도 강담돔이나 돌돔 양식에서 사용하고 싶은 백신이다.

- 그러나 시장 규모가 작은 양식어종에서는 백신 개발비 등을 회수할 수 없기 때문에 앞으로 이들 어종을 대상으로 한 이리도바이러스감염증 백신이 승인(효능 확대)되는 것을 기대할 수밖에 없다.

- 양식 현장으로서는 특정 어종에만 사용이 제한된 백신이 아닌 사용 대상 어종의 제한을 넘어서 수산용○○병 백신과 같은 모든 양식어에 같이 사용할 수 있게 하는 제도적 개선이 필요하다.

2.4. 해면양식에서의 요구

- 현장에서 가장 필요로 하는 세균성 백신으로는 에드와드증 백신을 들 수 있다. 방어의 노카르디아증과 세균성 용혈성 황달도 중대한 질병이지만 지역이 제한되거나 산발적인 발생이 많은 점 동 대처법도 존재하기 때문에 이들에 대한 백신이 실용화되어도 일부밖에 사용되지 않아 전국적으로 보급되지 않을 것으로 추측된다.

- 한편 에드와드증은 현재 넘치에서 가장 중요한 질병이지만 최근 돌류 어류에도 피해가 확대하고 있다. 참돔 양식 현장에서는 참돔이리도바이러스병 다음으로 가장 심각한 질병이다.

- 더욱이 2어종 모두 전국적으로 발생되고 있다. 이와 같이 세균성 질병과 바이러스성 질병과의 다가백신이 개발된다면 수산용 백신의 파급효과는 강화될 것으로 사료된다.

- 특히 약제로 대처할 수 없는 바이러스병 (VHS, VNN, birnavirus증 등)의 백신도 필요하다. 한편 백질병과 스키티카증, trichodina증 등의 원충 (원생동물)에 의한 피해도 매년 심각해지고 있다. 예를 들어 스키티카증
제 3 장 새로운 백신의 개발동향

본질의 질병으로 유명하지만 최근에는 참돔, 농어, 자주복에서도 심각하게 기생하고 있는 것이 관찰된다.

○ 특히 참돔에서는 뇌에 기생할 경우 심각한 피해가 반복히 발생하고 있다. 현재 스쿠티카증은 육상 넘치양식장뿐만 아니라 연안어장의 해수증에도 존재하고 있는 것으로 보인다.

○ 원충증에는 치료약이 승인되지 않았기 때문에 담수욕이나 방치하는 것 밖에는 대처 방법이 없다. 세균감염증, 바이러스감염증과 마찬가지로 원충증의 백신 개발도 필요한 실정이다.
제 4 장 수산용 백신개발에 있어 문제점과 과제

제 1 절 백신 평가법의 확립

○ 백신의 개발·실용화에 있어 유효성 평가하는 방법이 중요하지만, 현재로서는 공격시험에 의한 폐사율을 비교하는 것 이외 적당한 평가법은 없다.

○ 포유류에서는 혈중 항체가 상승을 기반으로 하는 경우가 많지만, 어류의 경우 비브리오병의 주사백신을 제외하고 방어능과 항체가 사이에 상관관계가 확인되지 않는 경우가 많다.

○ 예를 들어, 방어능이 인정되지만 항체가 확인되지 않거나 두려하게 낮은 경우도 있다. 이것은 항체가 반드시 유효성 평가를 위한 적절한 지표가 되지 않는다는 것을 의미한다.

○ 어류에 있어서는 백신에 의해 유도된 특이적 감염방어능은 항체를 중심으로 한 체역성 항체면역보다도, 세포상해성 T임파구가 주요한 역할을 하는 세포성 면역과 장관면역과 같은 국소면역, 혹은 자연면역이 보다 중요한 역할을 하고 있는 것으로 생각된다.

○ 그러나 현재로는 자연면역에 관한 면역기능(빈식능, 활성산소생산능, 보체·ribosome 등) 측정법은 일부 존재하지만, 세포성면역기능을 검사하는 방법에 대해서는 clonal silver carp을 이용한 in vivo 및 in vitro에 있어 세포성 면역기능 검사법 이외에는 확립되어 있지 않다.

○ 양식 대상이 되어 있는 어종에 있어서도, 인공자용발생법에 의해 낚치, 무지개송어, 은어 등에서 homo 집합체 클론이가 실험적으로 만들어졌지만, 백신의 검정에 사용할 수 있을 상황까지는 이르지 못했다.

○ 따라서 앞으로 보다 간편하고 광범위한 어종에 적용할 수 있는 평가법을 확립하기 위해서는, in vitro에 있어 세포 수준에서의 세포성 면역기능 검사법의 개발이 요망되고 백신의 대상이 되는 시험어의 확보가 어려운 경우에는 대체 어종으로 백신의 안전성과 유효성을 평가할 수 있도록 하
제 2 절 시험어의 확보와 공급

○ 백신 제조사나 국가에 의한 자가검정과 국가검정 혹은 검사기관에 의한 안전성 시험을 실시할 때에, 백신 접종 대상이 되는 적당한 크기의 어류를 확보하기 위해서 관계자들은 대단한 노력을 한다. 앞으로 좀 더 많은 수산용 백신 개발 수요 증가로 인해 관련기관별 개별적인 노력만으로는 한계가 있을 수 있다.

○ 노르웨이에서는 VESO(Centre for Veterinary Contract Research and Commercial Services, Ltd. (수의학계약연구·상업서비스센터))라고 불리는 센터가 있어, 시험어 확보와 공급을 하면서 백신의 안전성과 유효성을 검토할 수 있는 공동연구시설을 갖추고 있다.

○ 향후 국내에서도 어류 등을 대상으로 하는 시험어의 확보·공급과 안전한 실험설비를 갖춘 시설을 갖춘 CRO(contract research organization, 임상시험수탁기관) 구축을 통해 체계적인 수산백신 및 수산의약품 개발이 이루어질 수 있도록 노력할 필요가 있다.

제 3 절 다이종, 소생산의 문제

○ 수산용 백신은 광범위한 어종에서 사용할 수 있는 백신이 요구된다. 우리나라처럼 양식에 있어서는 대상이 되는 어류의 종류가 많고, 일부 어종은 적발한 수산표준을 따로 설정하기 전까지 적발할 수 있다.

○ 또한 어종 간에 있어 면역시스템과 질병에 대한 감수성이 각각 달라서, 기본적으로는 종마다 독자적인 백신을 개발할 수밖에 없고, 따라서 축주측에 반응성에 근거한 백신은 화학요법제와 동일하게 취급해서는 안 된다.

○ 또한 백신의 안전성과 유효성을 담보하면서 많은 어종에 사용할 수 있도록 하는 대응이 요구되고 있다. 예를 들어 백신 제조사 측의 개발 경비를 증대시키지 않기 위해서는 ‘기생인 백신에 대해서 어종 확대할 때에
제 4 장 수산용 백신개발에 있어 문제점과 과제

는, 목의 대표 어종에서 안전성을 담보하고, 동일 목에 속하는 어종에 대해서는 안전성 시험을 생략할 수 있도록 한다.」라는 식의 규정 개정도 가능할 것이라 사료된다.

○ 다만 adjuvant에 대해서는 어종에 따라 독성이 다르다는 것이 알려져 있고 어종별로 조사할 필요가 있다. 따라서 안전성 시험기준의 간소화·완화는 백신의 종류와 특성을 충분히 고려한 후에 실시해야 한다.

제 4 절 백신의 개발·시판의 신속화

○ 백신 개발에 있어 실험실 내에서 유효한 백신이 개발되었다고 하더라도 제조 승인의 신청과 승인, 야외실험 실시, 국가검증 등을 거쳐서 시판되게 되는데 통상적으로 적어도 3년 이상의 시간이 필요로 하게 된다. 이 과정은 백신의 안전성과 유효성을 보증하기 위해서는 피해로 돌아갈 수도 없고 생략할 수도 없다.

○ 하지만 신규 질병 증가 등으로 인해 막대한 피해가 발생하는 경우에 있어서는 사용하는 빌원체, 지역 및 기간을 한정하는 조건으로 야외에 어기 치료시험의 틀을 확대하는 등의 조치를 취하는 것도 고려해 볼만하다.

제 5 절 세포내 기생성 세균에 대한 대응

○ 양식 현장에 있어 막대한 피해가 있고 개발이 진행되고 있음에도 불구하고 아직까지 백신의 실용화에 이르지 못한 어병 세균이 일부 있다. Paracolo병 혹은 에도와드증을 일으키는 Edwardsiella tarda 및 세균성 신장병(BKD)의 원인균인 Renibacterium salmoninarum이 이것에 해당한다.

○ 또 절창병의 원인균인 Aeromonas salmonicida(해외에서 adjuvant첨가 주사 백신 개발에 의해 실용화되였다)가 있다. 이들 세균은 모두 세포내 기생성 혹은 세포와 친화성이 강한 세균이라고 생각되고, macrophage 등의 림프세포와 담파세포에 면역도 적지 않고 세포 내에서 증식하고 혈액을 통해서 전신으로 퍼진다.
제 4 장 수산용 백신개발에 있어 문제점과 과제

○ 항체는 세포 내에는 들어가기 않기 때문에, 항체를 유도해도 세포 속의 세균에는 효과가 없다. 또 세포의 세균에 대해서도 항체와 보체의 opsonin효과에 의해 탐식활성을 높이면 반대로 세균의 증식을 촉진하는 것이 된다.

○ 이러한 경우에는 액성면역을 유도해도 효과를 기대할 수 없고, killer T 일파구가 주인공인 세포성 면역을 유도하고, macrophage의 살균 활성을 높이는 것이 중요하다.

○ 세포성 면역기능을 향전시키는 adjuvant와 기법이 의학과 수의학 쪽에서 앞서 있으며, 이러한 방법을 수산학에 응용하는 것이 기대된다. 또 interferonγ를 시작으로 세포성 면역을 향전시키는 각종 cytokine유전자 가 어류에 있어서도 단일 되어, 앞으로 이러한 cytokine을 이용한 방법도 기대된다.

제 6 절 생백신의 개발

○ 생백신은 1회의 접종으로 장기간 지속하는 강한 면역이 얻을 수 있고, 더욱이 세포성면역과 국소면역을 유도하기 쉬운 이유로 불활화백신에 비해서 효과가 높다. 일본의 경우 현재 시판되고 있는 동물용 바이러스백신 중 약 2/3이 생백신이라는 현상도, 이것을 뒷받침하고 있다. 하지만 생백신에는 병원성 복귀하고 하는 위험성이 항상 도사리고 있다.

○ 수산용 백신에 대해서도, 「실용화는 당분간, 불활화백신에 대해서 이루 어지는 것으로 한다」의 조항이 빠지지 않는 것도 이런 이유에 의해서 다. 특히 수산에 있어 생백신의 실용화가 곤란한 이유로서 ①육상과 수중에서는 바이러스와 세균의 전이 및 증식기작이 매우 달라서 수중에 있어서는 전이와 증식이 일어나기 쉽다고 생각하는 점, ②수산 양식의 경우에는 격리가 어렵다는 점, ③병원체의 숙주범위(일반적으로 어영 바이러스의 숙주범위는 포유류의 바이러스와 비교해서 매우 넓다)와 자연계의 경우 분포 전이기작이 거의 알려져 있지 않다는 점 등을 들 수 있다.

○ 그러나 biotechnology를 구사하여 안전성에 문제가 없는 생백신이 개발
제 4 장 수산용 백신개발에 있어 문제점과 과제

_vi

된다면 수산에 있어서도 생백신의 실용화는 가능하게 될 것이다. 아메리카메기의 장염혈증과 연어과 어류의 세균성 신장병(BKD)에 대한 백신이 약독성 백신으로 미국과 남미·칠레에서 시판되고 있다.
○ 참고 문헌

1. www.shrimpnews.com

2. www.ofis.or.kr

3. www.lib.noaa.gov

   어패류의 감염증과 기생충. 라이프사이언스


   Vaccines for fish in aquaculture. Expert Rev. Vaccines, 4, 89~101

7. 中西照幸(2009), 水産用ワクチンハンドブック, 恒星社厚生閣

8. fdcc.nfrdi.re.kr(국립수산과학원 어병정보센터)
한국과학기술정보연구원