운전자 상태 감시 시스템
기술/시장정보 분석보고서

전유택, 장태종, 김근환
<목차>

제1장 서론 .. 1
 제1절 분석 배경 ... 1
 제2절 분석 목적 .. 1
 제3절 분석 내용 및 방법 .. 2

제2장 기술분석 .. 3
 제1절 기술개요 ... 3
 제2절 기술현황 및 전망 ... 7

제3장 시장분석 ... 13
 제1절 시장개요 ... 13
 제2절 시장동향 .. 22
 제3절 시장전망 .. 36

제4장 결론 및 시사점 .. 41

<참고문헌> ... 43
표 목차

표 2-1 운전자 상태 감시 시스템의 응용 가능성여 .. 6

그림 목차

그림 2-1 시선인식 Layer 모델 ... 4
그림 2-2 자동차에 적용한 비디오분석 방식 DSM 원리 5
그림 2-3 포털사이트 홈페이지 개편 사례 .. 5
그림 2-4 자동 복마킹(좌), 속도수 주요단어 부가(우) 6
그림 2-5 1세대 2D 운전자 상태 감시 시스템 ... 8
그림 2-6 2세대 3D 운전자 모니터링 시스템 .. 8
그림 2-7 매뉴얼 마크업 모델 ... 9
그림 2-8 3D 모델 텍스쳐 ... 9
그림 3-1 운전자 상태 감시 시스템 제조 산업의 산업연관도 14
그림 3-2 자동차 제조원가 중 전자부품/SW 비중전망 15
그림 3-3 지능형 자동차 산업의 글로벌 생태계 16
그림 3-4 고령운전자 교통사고 사망자 추이 ... 17
그림 3-5 자동차 구매 영향을 미치는 요소의 변화 19
그림 3-6 자동차 안전시스템의 발전 방향 .. 19
그림 3-7 지능형 자동차 기능들 ... 20
그림 3-8 차량 안전제품에 대한 의무장착 로드맵 21
그림 3-9 자동차 부품 산업의 SWOT 분석 .. 22
그림 3-10 덴소의 DSM의 구성 모식도 .. 23
그림 3-11 덴소의 Driver Status Monitor .. 24
그림 3-12 덴소의 패션제아이(Passenger Eye) .. 24
<그림 3-13> 아이신세이키의 Driver Monitoring System 데모시스템 25
<그림 3-14> 보쉬의 운전자 줄음감지 시스템 .. 26
<그림 3-15> 현대모비스 DSM 시연모습 ... 27
<그림 3-16> 콘티넨탈의 Driver Focus Car ... 28
<그림 3-17> 알프스 전기 개발제품 .. 28
<그림 3-18> 차량용 감정 탐지기 ... 29
<그림 3-19> Trywin의 Dramoni .. 31
<그림 3-20> 디나로그의 브레이트 DL220A .. 31
<그림 3-21> 카페 아마존의 앱 Drive Awake .. 32
<그림 3-22> 유럽의 자동차 규제 범안 계획 .. 34
<그림 3-23> 미국의 ADAS 시장규모 및 전망 .. 37
<그림 3-24> 유럽의 ADAS 시장규모 및 전망 .. 38
<그림 3-25> 세계 DSM 시장규모 및 전망 .. 38
<그림 3-26> 국내 ADAS 시장규모 및 전망 .. 39
<그림 3-27> 국내 DSM 시장규모 및 전망 .. 40
제1장 서론

제1절 분석 배경

최근 자동차에 다양한 첨단 IT 기술이 접목됨에 따라, 스마트카 관련 기술은 엄청난 속도로 발전하고 있다.

특히 차량용 안전장치의 경우, 이전에는 충돌 후 사고 피해를 경감하는 수동 안전(Passive Safety) 개념이 주류였다면, 최근에는 운전을 지원하고 사고를 미연에 방지하며 사고가 발생하더라도 피해가 확대되는 것을 방지하는 능동안전(Active Safety) 개념으로 바뀌고 있다. 뿐만 아니라 수동 조작이 필요 없는 자율 주행을 목표로 각종 기술들이 개발되고 있는 상황이다.

이러한 첨단운전자지원시스템(ADAS, Advanced Driver Assistance System)에는 차선이탈경고(LDW, Lane departure warning), 적응형 주행제어(ACC, Adaptive cruise control), 전방추돌경고(FCW, Forward-collision warning), 사각지대 감지(BSD, Blind-spot detection) 시스템 등이 포함되어 운전자에게 안전성과 편의성을 제공하고 있다.

본 분석보고서에서는 최근 주목 받고 있는 첨단운전자지원시스템 중의 하나인 운전자 상태 감시 시스템(DSM, Driver State Monitoring System)에 대한 기술성과 시장성을 객관적으로 파악하고자 한다.

제2절 분석 목적

현재 우리나라 완성차 업체의 시스템 제작 기술은 이미 선진국과 거의 대등한 수준이라고 할 수 있다. 그러나 지능형 자동차 또는 스마트카에 사용되는 센서, 소프트웨어, ECU(Electronic Control Unit), 알고리즘 등의 핵심기술은 대부분 수입에 의존하고 있다. 때문에 차량의 가격이 높아질 수밖에 없고, 주변의 역추행이 터지지 제한받는 경우도 있다. 그러므로 향후 스마트카 분야에서 우리나라는 세계 선진국과 어깨를 나란히 하기 위해서는 먼저 이와 같은 기술의 국산화가 이루어져야 한다.
최근 산학연 등 각 분야에서 관심 있는 주요 산업에 대한 종합적이고 신뢰성 있는 시장정보 분석의 수요가 증대하고 있으나, 실제 연구·분석기관들을 통한 종합적인 산업시장정보 분석에 대한 공급은 미미한 실정이며, 특히 소규모의 시장으로 형성된 첨단운전자지원시스템(ADAS, Advanced Driver Assistance System)들 중의 하나인 운전자 상태 감시 시스템(DSM, Driver State Monitoring System)에 대한 시장정보 분석은 일부 선행정보만 있는 실정이다.

이에 한국과학기술정보연구원(KISTI)에서는 최근 시장성 및 경제성 면에서 향후 주목할 만한 잠재시장으로 성장하고 있는 운전자 상태 감시 시스템 시장을 선정하여, 기술 동향 분석, 선형 특허분석, 시장 동향 분석, 산업구조 분석, 수요 예측 등을 수행하였다.

운전자 상태 감시 시스템 시장정보 분석을 통해 현재 운전자 상태 감시 시스템 개발 및 관심 있는 사업자에게 효율적 마케팅을 통한 성공적인 시장진입을 위해 객관적이고, 충실한 시장정보를 제공하는데 목적으로 두고 있다.

제3절 분석 내용 및 방법

운전자 상태 감시 시스템 시장정보 분석의 내용은 시장정보를 바탕으로 운전자 상태 감시 시스템 사업의 진출을 위한 국내외 시장정보 분석을 하였다.

그러나 시장정보 분석의 범위에 대한 지나친 확대를 막기 위하여 요소 기술을 제외한 국내외 운전자 상태 감시 시스템 시장을 중심으로 시장정보를 분석하였다.

구체적으로는 제2장에서 기술 개요, 국내외 기술개발현황, 제3장에서는 시장 개요, 산업의 특징, 산업변화 요인분석, 국내외 시장 현황 등 시장 동향을 분석하고, 제4장에서는 결론 및 시장 전망과 시사점을 다루었다.

운전자 상태 감시 시스템의 기술정보 및 시장정보 분석의 방법에서 일본, 유럽, 미국 등의 최근 시장분석보고서, 국내 조사전문기관의 발표자료, 업계 및 연구소의 Field Survey, 언론 보도 등을 통한 자료조사 방식을 활용하여 국내외 시장정보를 분석하고, 국내외 시장 전망을 통계적인 수요예측 기법을 활용하여 전망하였 다.
제2장 기술분석

제1절 기술개요

1. 개념 및 특성

우리의 뇌는 수많은 정보를 받아들이고 해석하며 처리한다. 뇌가 받아들이는 정보의 80%가량을 눈이 담당하고 있다.

정보통신 기술의 발달은 우리가 기기와 교류하는 방식을 바꾸고 있으며, 특히 시선인식 기술은 기기의 간단한 조작에서부터 미래의 행동예측까지 다방면에서 활용 가능성이 커지고 있다.

 눈을 매개로 한 센서기술은 시각인식과 시선인식으로 구분된다. 시각인식은 센서가 사람의 얼굴을 인식하는 단계에서 얼굴 표정을 통해 기분 상태를 알아내거나 시선이 향하는 곳을 감지하는 기술로 발전하고 있다. 시선인식은 소비자의 행동을 분석하고, 장애인의 기기 조작을 도우며, 학습이나 훈련 등에 활용하는 연구가 진행되고 있다.

보통 시각인식 기술은 얼굴 등 여러 요소를 종합해 인지하고 처리하기 때문에 센서의 정교함보다는 데이터 처리 능력을 더 필요로 한다고 볼 수 있다. 반면에 시선인식은 눈동자의 미세한 움직임을 포착하고 작동할 수 있어야 하기 때문에 고도의 센서 기술을 필요로 한다.

최근에는 눈동자 인식에서 더 나아가 ‘홍채 인식’ 기술이 대두되고 있다. 홍채인식 기술은 눈동자 색, 눈썹 길이 등 사람마다 제각각인 특정을 일정한 공식으로 잡아내야 하는 동시에 빛 등 장소에 따른 외부 변수를 모두 고려해야 한다. 이러한 고려 사항 때문에 기술의 핵심은 디바이스 내 고도의 센서를 추가해 홍채인식의 분류를 높이는 것이다. 시선을 빠른 속도로 추적하고 처리 방법인 복잡해질수록 기기가 처리해야 하는 연산량이 많아진다.

홍채인식을 비롯한 시선인식은 눈동자의 움직임을 감지하여 시선의 위치를 추적하는 기술로서 비디오분석, 콘택트렌즈, 센서부착 방법의 3가지 방식이 있으며, 최근 카메라와 컴퓨터의 초소형화와 사용자의 편의를 생각한 비접촉 방식인 영상 처리(Image-processing)를 이용한 비디오 기반 방식을 보편적으로 채택하고 있다.
<그림 2-1> 시선인식 Layer 모델

자료: Eye gaze tracking for HCL, 펜앤대학교, 2010

최근 시각 및 시선인식 기술은 하드웨어와 영상 처리 발전에 따라 지능형 자동차의 첨단운전자지원시스템(ADAS, Advanced Driver Assistance System)의 하나인 운전자 상태 감시 시스템(DSM, Driver State Monitoring System) 기술에 대한 연구가 활발히 진행되고 있고 실제 적용되고 있는 상황이다.

운전자 상태를 감지하는 시스템에 관한 용어는 개발자에 따라 여러 가지로 불리며, 일반적으로 운전자 상태 감시 시스템(DSM, Driver State Monitoring System), 운전자 모니터링 시스템(DMS, Driver Monitoring System) 그리고 휴전운전 감시시스템(Drowsiness Detection System) 등으로 사용되고 있다.

카메라로 받은 영상을 통하여 운전자의 시야 확장, 휴전운전 및 부주의로 인한 사고 방지, 자동 주차 등 폭넓은 응용이 가능하다. 그 중에서 휴전운전 방지 기술의 경우, 운전자의 얼굴 표정, 눈 감박거리, 눈 응시 방향 등 다양한 시각적 특징들을 감지하여 운전자들의 휴전운전 여부를 판단하고 경고한다. 판단 과정에서 데이터 처리량이 지나치게 많아져 실시간으로 휴전 및 부주의를 인지하지 못해 기계적인 오작동 문제가 발생하기도 한다.

2. 기술적용 및 응용 가능 분야

차량 내에 장착되어 운전자의 상태를 실시간으로 감지하여 경고해주는 시스템인 운전자 상태 감시 시스템에 적용되는 시각인식, 시선인식 및 시선추적 기술은 차세대 인터페이스 수단으로 지능형 자동차 분야 외에도 다양하게 활용되고 있다.

첫째, 조사 분야에서 사용자 심리를 분석하는 유용한 방법으로 사용된다. 예를 들면, 주변 시선 위치를 분석함으로서 향공기 조종 공간 내 제어장치의 위치를 결정하거나 포털사이트의 웹페이지를 구성하는데 이용되어 적관적이고 편리함을 추
<그림 2-2> 자동차에 적용한 비디오분석 방식 DSM 원리

구한다. 또한 광고 디자인 및 제품에 있어 시각적 인지도를 측정하여 효과적인 모양, 색, 배치를 결정하기도 한다.

<그림 2-3> 포털사이트 홈페이지 개편 사례

둘째, 장애인들의 의사소통 및 기기제어를 위한 수단으로 사용된다. 눈을 통해 글씨를 입력(Eye-typing)하여 대화를 하고 TV 및 휴대폰 등의 기기를 제어하는데 활용하고 있다.

셋째, 의학 진단 및 수술 분야에 적용가능하며, 눈의 상처 혹은 눈 손상 환자의 기능 진단 및 안과 수술(라식, 라섹 등)시 정확한 안구의 움직임을 파악하여 정밀 도가 높은 수술을 진행할 수 있다.

넷째, E-Book, Life-Log 등의 서비스에 접목하여 기존 입력장치로 구현이 어려운 기능을 부가하여 새로운 사용자 경험을 제공할 수 있다.

2010년 독일 인공지능 연구센터 (DFKI)의 Text 2.0 프로젝트는 태블릿 기기 등에서 활용 가능한 미래의 인터랙티브한 독서방법을 제시했으며, 임력은 부분이나 놓친 부분 등을 화살표로 안내해 주고, 사용자가 속독을 하고 있을 때 중요한 단
어둡게 표시해 주며, 텍스트의 특정 부분을 읽을 때 연관된 이미지 및 설명 등장하게끔 도와주는 서비스를 제공할 수 있도록 연구되고 있다.

![그림 2-4] 자동 북마킹(좌), 속독시 주요단어 부각(우)

또한 안경에 부착이 가능한 초소형 아이트래킹(시선추적, Eye-tracking) 장비로 사용자가 바라보는 글씨를 인식하여 Life-Log에 옮길 수도 있다.

![표 2-1] 운전자 상태 감시 시스템의 응용 가능성

<table>
<thead>
<tr>
<th>순서</th>
<th>분야</th>
<th>응용 가능성</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>사용자 심리 분석</td>
<td>★★★</td>
</tr>
<tr>
<td>2</td>
<td>장애인들의 의사소통 및 기기제어 수단</td>
<td>★★</td>
</tr>
<tr>
<td>3</td>
<td>의학 진단 및 수술 분야 적용</td>
<td>★</td>
</tr>
<tr>
<td>4</td>
<td>기존 입력장치로 구현 어려운 입력가능 부가</td>
<td>★★</td>
</tr>
<tr>
<td>5</td>
<td>서비스 및 장치 제어하는 새로운 수단</td>
<td>★</td>
</tr>
</tbody>
</table>

주: ★★★-매우 우수, ★★-우수, ★-보통

마지막으로, 각종 서비스 및 장치를 제어하는 새로운 수단으로서 활용범위를 확대하여 적용하고 있다.

2009년 PsychNology 저널에서는 마우스와의 비교 실험을 통해 동등 이상의 속도로 추적 및 입력이 가능하며 게임 등의 입력장치로의 활용 가능성을 검증했고, 2010년 SMI사에서는 눈동자의 방향에 따라 헌들이 조정되고 앞차를 주시하면 따라서 기능 등의 시선을 통한 운전으로 장애인 및 비장애인에게 편리성을 제공
할 수 있는 시험을 했다. 그리고 2010년 Dartmouth College는 눈 감박임으로 휴대전화의 메뉴를 선택할 수 있는 기능을 Nokia810 모델로 시연하기도 했다.

이렇듯 시각인식, 시선인식 및 시선추적 기술은 지능형 자동차 시스템에 국한되지 않고, 시전 위치 추적에 따른 디바이스 제어나 공정 제어 환경과 같이 동시에 조정해야 할 것들이 많은 상황에서 손과 동시에 눈을 이용한 입력을 가능케 하는 등 다양한 분야에 응용될 수 있다.

제2절 기술현황 및 전망

1. 해외 기술개발 동향

운전자 상태 감시 시스템에서 카메라를 이용하는 안면인식(Facial recognition)이나 시선을 추적하는 아이트래킹(Eye-tracking) 등의 기술 연구는 이미 10년 전부터 진행되어 왔고, 특수차량이나 OEM사들이 생산하는 상용차 및 고급차종에는 일부 이 기술이 적용되어 피로 및 졸음과 관련한 사고 예방에 활용되어 왔다.

2001년 도요타사가 연구개발한 초기의 운전자 상태 감시 시스템은 CCD 카메라를 스티어링 컬럼 위에 6개의 적외선 카메라와 함께 장착해 낮과 밤 모두 작동할 수 있도록 개발한 것이 특징이었다. 시동을 커면 센서는 코와 입을 포함한 운전자 안면의 특징과 얼굴의 중요한과 폭을 파악하여 좌우를 돌아보는 운전자의 머리를 추적하고 매프한다. 기본적으로 운전자의 얼굴이 카메라의 가시선 내에 명확하게 놓이면 운전자의 시트 내 위치, 얼굴 특징, 선글라스 착용 여부와 관계없이 비교적 정확한 기능을 수행했다.

현재 사용하고 있는 1세대 운전자 상태 감시 시스템은 2D 헤드(Head) 모델로 눈 감박거림과 얼굴 방향을 인식해 운전부주의나 졸음운전을 방지하는데 그치지만, 맨체스터 대학과 도요타사가 공동으로 진행하고 있는 선행개발 기술인 2세대 운전자 상태 감시 시스템인 '운전자 모니터링 시스템(DMS, Driver Monitoring System)'은 Sparse 3D 모델을 이용한 기술을 통해 '인식' 정확성을 높이는 한편, 표정까지 읽어 감정 상태에 따른 반응 속도에 대응하는 첨단 운전자 지원 시스템과의 연계를 하려고 한다.

3D 페이스트래커(Face tracker)는 운전자의 얼굴을 추적하고 나타나는 특징을
해석함으로써 운전부주의나 졸음운전을 경보하는 한편, 기분(mood)을 파악해 운전자의 반응 속도에 따른 경고 시점을 달리하는 등 다양한 방식으로 안전 및 편의 애플리케이션에 응용할 수 있다.

편안함을 유지하고 있는 운전자는 정직한 기분에 가까운 반응 속도를 나타낸다. 화가 나거나 슬픈 운전자는 반응 속도가 느리기 때문에 안전 시스템도 이에 대응하는 작동이 요구된다. 2세대 운전자 모니터링 시스템은 안전 시스템에 ‘기분’에 대한 정보를 추가함으로써 운전자의 상태에 따라 반응을 달리해 더욱 정확한 사전 예방 접근이 가능해 승객, 보행자 및 차량 등 전체적인 도로 안전도를 향상시킬 수 있다.

<그림 2-5> 1세대 2D 운전자 상태 감시 시스템

<그림 2-6> 2세대 3D 운전자 모니터링 시스템

자료: 맨체스터 대학

2세대 운전자 모니터링 시스템에 사용한 3D 모델은 238개의 포인트(vertice), 900여 개의 메시(mesh)를 통해 만들어진다. 각각의 메시는 개별 사진의 마크업
(markup)으로부터 만들어지며, 이는 다른 시스템 대부분이 범위 데이터(range data)로부터 모델을 만드는 것과 다른 방식이다. 도요타사의 제네릭 메시(generic mesh)는 각 마크업에 맞춰 구부러지고 이에 따라 포인트가 자동적으로 세트에 일치한다.

2세대 3D 운전자 모니터링 시스템은 리얼리즘 요소를 추가하기 위한 몇몇 최적화 작업을 거치며 가능해진 우수한 디테일은 기존의 1세대 2D 운전자 상태 감시 시스템이 지난 문제점을 해결할 수 있을 것이다.

<그림 2-7> 매뉴얼 마크업 모델

자료: 멘체스터 대학

<그림 2-8> 3D 모델 텍스처

자료: 멘체스터 대학

2세대 3D 시스템에서는 스티어링 휠 또는 운전자의 손에 의한 가려짐 현상, 햇빛에 따른 강한 그림자, 사각지대를 보기 위한 과도한 머리 회전 등에 대해 예민하게 인식하지 않아도 된다. 1세대 2D 시스템은 화각 내에서 왜 얼굴이 사라졌는지를 컴퓨터 할 수 없었지만, 2세대 3D 시스템에서는 이와 같은 상황에서도 트래킹 할 수 있기 때문이다. 2세대 운전자 모니터링 시스템은 3D 모델 내 알고리즘을 통해 얼굴의 어디에 다른 포인트가 있어야 하는지를 컴퓨터 하고 238개의 포인트를 볼 수 있도록 한다. 1세대 2D 모델은 운전자가 머리를 특정 방향으로 돌
리고 다른 방향으로 50도가 되면 30도에서 동작이 정지되었지만, 3D 모델에서는 90도에서 90도까지 트래킹 할 수 있다.

3D 운전자 모니터링 시스템을 통해 미소는, 웃는 그리고 화난 표정 등의 모델링을 시작할 수 있게 됐다. 또 표정을 맵핑하는 동안 운전자의 표정, 행동 및 실제 무엇을 하고 있는지에 대한 연관성을 테스트하고 신호를 추출했다. 스마트폰을 만지고, 내비게이션을 이용하거나 다른 사람을 주시하는 등의 행동을 인식할 수 있게 된 것이다.

2. 국내 기술개발 동향

국내 운전자 상태 감지 시스템에 대한 기술개발 현황은 해외의 기술 동향과 비교해보면 상당히 저조한 상황이지만, 정부의 적극적인 지원 하에 산·학·연의 다양한 전조사업을 형성해서 해외 선도기업과의 기술격차를 줄이기 위한 노력을 하고 있다. 국내 기술개발 동향은 다음과 같이 네 부분으로 정리된다.

첫째, 2013년 산자부의 산업융합기술산업 원천기술개발사업의 일환으로 ‘운전자 상태 및 주행상황 정보 센싱 기술개발’ 과제를 전자부품연구원(KETI) 주관으로, (주)유비엠티사와 한국외국어대학교가 참여하여 기술개발을 진행하고 있다. 실차 기반 운전자 상태 졸음인식 알고리즘을 개발하여 상용화할 수 있는 플랫폼 양산을 목표로 하고 있다. 세부적인 사항은 CAN 통신지원 운전자 졸음인식 상용화 플랫폼을 양산하고, 실차기반 운전자 졸음 상태 인식 알고리즘을 개발하며, 최적화된 동공 인식알고리즘을 개발하는 것이다. (주)유비엠티는 운전자 상태 및 주행상황 정보 HVI 센싱 플랫폼 양산을 위해 연구개발에 참여하고 있고, 한국외국어대학교는 다중센서 기반의 차량용 정보처리 CAN 인터페이스 SW모듈을 개발하는 데 주력하고 있다.

둘째, 정보통신 기술인력 양성사업으로 2013년 ‘비전센서기반 운전자 졸음 및 상태 인식시스템’을 개발하고 있으며, 조명변화에 얼굴 추적이 가능하도록 성능을 향상시키는 기술과 운전자 머리 포즈 추적시스템 및 머리 교팅된 측정 기술을 개발하여 운전자가 전방을 주시하면서 운전할 때 얼굴의 포즈를 기본으로 현재 얼굴이 주시하는 방향을 추정할 수 있으며 차량운전 중 졸음이 오는 운전자는 머리를 교팅함으로 이를 일정한 시간 내에 측정하여 졸음 상태를 파악할 수 있다. 비
전 센서를 이용해 측정 가능한 요소는 얼굴표정, 시선, 머리포즈, 머리 끝덕임, 눈의 개폐빈도 등이다.

셋째, 2011년 중소기업 R&D 기획역량혁신사업과 2012년 창업성장기술개발과 제로 (주)바이브라시스템이 ‘바이브라아미지 기술을 이용한 운전자의 졸음 상태를 예측, 탐지할 수 있는 기술 및 시스템 개발을 진행하고 있다. 본 기술개발은 자동차 운전자의 졸음상태를 예측, 탐지하는 기술 및 시스템을 개발하기 위한 것으로 생체 신호인 뇌파측정과 실시간으로 동기화된 영상을 상호 맵핑시키는 바이브라아미지 기술을 이용하는 것으로서, 졸음상태를 졸음 발생 최소 5초전에 감지하고 졸음상태의 인식률을 향상시켜 개선하기 위한 것이다.

마지막으로는 2012년 한국통신학회논문지에 발간된 ‘운전자 졸음 인식 시스템 구현’에 대한 연구논문이다. 본 논문에서는 운전자 졸음 인식 시스템의 구현 방법과 그에 따른 결과를 소개함으로써, 영상 입력 장치로는 시중에 판매되는 웹캠 카메라를 사용하였다. 얼굴 검출 방법으로는 Haar 변환 기법을 이용하였으며, 다양한 조명 환경에 강건하게 적용하도록 조명정규화를 수행하였다. 조명정규화를 거친 얼굴 영상은 특징값 추출에 용이하고, 조명정규화를 통한 눈 후보영역은 인체 측정학 정보를 이용하여 후보 영역을 줄인 이후에 PCA와 Circle Mask의 혼합 모델을 적용한다. 위 방법을 통해 차량 내부의 복잡한 조명 환경 속에서 강건히 눈 영역을 추출하고, 검출된 눈 영역은 고해상도의 조명정규화 영상과 간단한 연산을 통하여 졸음 여부를 판단한다. 졸음 상태가 1단계로 판단 될 경우에는 통합 모니터링 인터페이스에서 운전자가 경고음을 울리거나 2단계일 경우에는 CAN(Contro ller Area Network)을 통하여 안전벨트를 진동하게 함으로써 운전자에게 경고를 준다. 이 논문에서 제안하는 졸음 인식 시스템은 낮은 계산 복잡도를 만족하는 동시에 높은 인식률을 보여준다. 실험 결과 차량 내에서 97%의 인식률이 나타났다.

3. 기술 전망

국내외 기술개발 동향을 살펴보면, 1990년대에는 주로 눈 감빡임을 감지하여 졸음운전을 방지하는 기술이 주로 개발되었으며, 2000년대에는 졸음운전 여부를 판단하여 경보음을 울리거나 몸에 직접 부착하는 센서 없이 운전자 눈의 변화를 감지하는 기술들이
개발되었다. 최근에는 운전자 시선 감출을 통해 차량 클러스터 상의 다수 컨텐츠를 운전자가 인식하기 쉽게 하여 운전자 편의성을 향상시키는 기술이 개발되고 있다.

또한 단순히 졸음 여부를 판단하는 수준에서 벗어나 사람의 감정 상태까지 파악하여 운전자가 요구하기 전에 자동차가 운전자의 요구 사항에 대한 응답하는 부분까지 발전하고 있다.

운전자 상태 감시 시스템의 기술개발 동향은 미래의 운전자와 자동차 사이의 상호 영향에 대한 발전 방향을 반영하는 것으로 판단된다. 향후 운전자의 상태를 인식하는 수준에서 벗어나, 운전자 상태 감시 시스템이 운전자와 자동차 사이의 통합적인 인터페이스로서 발전하게 될 것으로 전망된다.
제3장 시장분석

제1절 시장개요

1. 시장의 정의

최근 다양한 모바일 기기, 내비게이션과 멀티미디어 장치들이 자동차 내에 사용되면서 운전자 집중력 감소, 운전부주의, 주의분산 등 운전부하와 관련된 사고가 중요한 이슈로 떠오르고 있다.

미국 NHTSA 보고서에 의하면, 운전자 주의분산과 집중력 감소가 교통사고 중 70% 이상의 원인으로 판단되고 있다. 특히 운전 중 문자메시지를 이용할 경우 교통사고 확률이 23배 증가하는 것으로 분석됐고, 이는 사물에 대한 순간적인 반응 시간이 30% 정도 늦어지면서 음주운전보다 더 위험한 것으로 보고되고 있다.

이러한 운전 부주의로 인한 사고를 미연에 예방하기 위해서 다양한 운전자 상태 감시 시스템(DSM, Driver State Monitoring System) 기술이 개발되고 있다.

기존 운전자 상태 감시 시스템은 눈 감싸임, 얼굴 방향 등을 인식했던 기술에서 아직 상용화되지 않았지만 3D 카메라를 이용해 운전자의 얼굴 표정까지 인식할 수 있는 기술이 개발되었다.

운전자 상태 감시 시스템은 운전자의 안전을 위한 시스템인 ADAS 중 하나로 국내에서는 상용화될 수 있는 기술 및 제품 개발이 조속히 요구되는 분야이다. 본 분석대상 기술이 성공적으로 개발되어 상용화 단계에 이르게 된다면, 수입 대체 효과뿐만 아니라 국내 글로벌 완성차 업체의 차량에 탑재되어 수출 효과도 충분히 기대할 수 있다.

운전자 상태 감시 시스템 시장의 동향을 살펴보기 위해 분석 대상 기술이 속한 자동차 및 자동차 부품 산업의 특성을 이해하고 자동차 산업을 변화하게 만든 여러 가지 환경적인 요인들을 찾아본 후 운전자 상태 감시 시스템 시장의 동향을 살펴본다.
2. 산업의 특성

운전자 상태 감시 시스템(DSM, Driver State Monitoring System)은 지능형 자동차의 전장부품의 하나로 자동차 부품산업으로 정의할 수 있다. 후방산업으로는 시스템을 형성하는 여러 모듈들을 만들 수 있는 기초 소재 산업, 전방산업은 완성차 업체로 규정할 수 있다.

<그림 3-1> 운전자 상태 감시 시스템 제조 산업의 산업연관도

자동차산업은 국내 총생산 및 수출에서 차지하는 비중이 높고 전후방 경제적, 기술적인 파급효과가 커서 국가 경제에서 중요한 위치를 차지하고 있다. 그런데 최근 자동차산업에 있어 트렌드가 급속도로 빠르게 변화하고 있다.

최근 자동차의 진화 트렌드를 살펴보면, 첫째, IT 융합 기술이 발전하고 안전성, 편의성에 대한 소비자의 기대가 높아지면서 스마트카(지능형 자동차), 자율주행 자동차 등 차량 시스템의 지능화가 빠르게 진행되고 있다.

둘째, 휘발유, 경유를 연료로 사용하는 내연기관 엔진차에서 전기 배터리와 모터로 구동되는 동력원의 전기화 추세가 지속되고 있다.

셋째, 주요 선진국 정부들이 차량 연비규제를 강화함에 따라 차체의 경량화가 선택 아닌 필수적 과제가 되었다.

이와 같은 자동차산업의 핵심경쟁력 변화는 가치사슬의 변화를 가져오게 된다.

소재산업에 있어서는 철강 산업이 차지하는 비중이 감소하고 비철금속 및 합성수지 관련 산업의 비중이 증가하고 있다. 철강업체는 자동차용 경량 소재에 의한 대체위험에 대응하여 경량소재 개발에 주력해왔으나 추가적인 경량효과 실태에는 한계에 봉착한 상황이다.

이에 따라 비철금속 및 화학소재 업계는 자동차용 소재 개발에 적극 진출하면
서 철강재를 대체하기 위해 노력하고 있다. 국내 자동차산업 전체 중간투입액 대비 철강 1차 제품 중간투입액 비중은 1990년 10.9%에서 2010년 7.2%로 감소한 반면, 플라스틱 제품의 중간 투입액 비중은 같은 기간 4.5%에서 6.6%로 증가하였다.

본 분석대상 기술이 속하는 부품산업은 자동차 부품의 전장화(電裝化), 동력원의 전기화가 진행됨에 따라 기계장비 및 엔진 부품의 비중이 감소하고 전자장비가 차지하는 비중이 증가하고 있다. 내연기관 엔진 및 관련 부품의 비중이 감소하고 전기차 관련 부품의 비중이 증가함에 따라 세계 자동차 제조업의 전자 부품 및 소프트웨어가 차지하는 비중은 2020년 35%, 2050년에는 50%까지 증가할 것으로 전망하고 있다.

<그림 3-2> 자동차 제조업의 전자부품/SW 비중전망

자료: Bosch, PSA, Freescale Strategy, HMC투자증권

완성차업체에서는 기존 완성차 제조업체의 그린카, 스마트카 생산 비중이 증가하는 한편, 신규 진입자의 등장 및 주도권 역전 가능성도 증가하고 있다. 국제에너지기구(IEA)는 기존의 내연기관 승용차 판매량이 2020년을 기점으로 감소하기 시작하고, 2030년에는 전기차 등의 판매대수가 기존 내연기관 엔진차의 판매대수를 추월하게 될 것으로 전망하고 있다.

구동계통의 단순화, 핵심경쟁력의 변화 등으로 진입장벽이 낮아짐에 따라 신규 완성차 업체의 시장 진입 가능성이 증가하고 있으며, 이미 2003년 설립된 전기차 동차 제조업체 태슬러 모터스, 구글의 자율주행자동차 등은 기존의 완성차 업체들을 위협하고 있는 실정이다.
인프라부문을 살펴보면, 전기차의 보급 확대는 정유업체의 사업모델 변화를 촉진시킬 것으로 보이며, 스마트카의 확산은 지능형 교통 시스템 구축을 가속화할 것으로 전망된다.

세계 전기차 충전 인프라 시장규모는 2015년 1,438억 엔에서 2025년 2,901억 엔으로 성장할 전망이며, 기존의 정유업체, 전력업체, 완성차업체 등은 전기차 충전 인프라 시장을 선점하기 위해 경쟁과 협력을 전개하고 있다.

또한 미국, 유럽, 일본 등 주요 선진국 정부는 실제 도로에서 모든 차량을 대상으로 통일된 시스템을 제공하는 스마트 교통 시스템 구축 등을 적극 추진하고 있다.

이러한 자동차 산업의 가치사슬의 변화는 결국 산업구조 재편으로 이어지며 완성차 및 부품·소재 공급 기업들에게 위기와 기회를 동시에 제공하고 있다.

자동차산업의 핵심 부문은 기계부품 제작 및 조립 중심에서 IT제조, 소프트웨어, 첨단소재 중심으로 변화하고 있다.

스마트폰을 중심으로 전개되었던 ICT 분야의 특허분쟁이 자동차 영역으로 확산되고 그린카 및 스마트카 관련 특허출원 및 소송이 급증하고 있다. 또한 자동차 운영체제(OS) 및 기술표준 선점을 위한 경쟁이 치열하게 전개되고 있으며 핵심기술 획득을 위한 M&A도 활성화되고 있다.
자동차 산업 내 기업 간 관계는 완성차 업체를 중심으로 한 수직적 구조에서 거래 관계의 개방도가 높아지는 수평적 구조로 전환될 것으로 보인다.

향후 부품 공급자와의 거래는 자회사 거래, 공존적 협력사 거래 중심에서 병렬적 협력사 거래, 시장 거래 중심으로 변화 것으로 보이고, 제한된 협력사 중심의 고착된 산업구조에서 다양한 플레이어들의 등장 및 패턴이 활발해지는 유동적 구조가 형성될 전망이다.

스마트카 및 전기차 관련 인프라 확충, 기술표준 정비, 안전 및 환경기준 마련 등과 관련하여 정부의 역할이 더욱 중요해질 것으로 전망된다.

자동차는 스마트폰 등과 달리 도로교통 시스템 및 공공 충전인프라와의 연계가 불가피하여 정부 정책의 영향을 크게 작용한다. 주요국 정부는 전기차, 스마트카를 자동차산업과 ICT 산업의 미래를 좌우할 핵심 아이템으로 선정하고 유리한 경쟁환경 조성을 위해 적극적인 노력을 펼치고 있다.

3. 산업변화 요인분석

앞서 언급했듯이 자동차산업의 핵심경쟁력 변화는 자동차 산업의 가치사슬의 변화, 산업구조 재편으로 이어지는데 이러한 과정에서 완성차 및 부품·소재 공급기업들에게 새로운 위기와 기회를 동시에 제공하고 있다.

이러한 현상들 야기된 원인들을 인구통계학적, 사회·문화적, 기술적, 정책적 변화 등으로 구분하여 전반적으로 살펴본다.

2010년 통계청 조사발표에 따르면 우리나라는 2019년 고령사회, 2026년 초고령사회로 진입할 것으로 예상된다. 이러한 인구 고령화에 따른 고령 운전자의 교통사고 증가는 고령 사회를 대비한 자동차 개발을 요구하고 있다.

지난 2010-2025년 25년간 전체 교통사고 사망자는 60% 감소하였으나, 고령 운전자가 차지하는 비율은 3배 이상 증가하였고, 고령운전자는 운전미숙이나 느린 반응속도로 인해 교통사고 유발가능성이 높다. 향후 고령인구의 구매력은 오늘날보다 훨씬 높을 것으로 보이는 바, 고령 친화적인 자동차 설계 기술 및 안전 강화는 미래 자동차 시장의 판매를 결정하는 주요한 요소로 예측된다.
2012년 경찰청 교통사고 통계에 의하면, 교통사고를 발생시킨 범위 위반 사항들 중 운전부주의로 인한 사고가 전체 교통사고 222,633건 중 125,391건으로 56.07%를 차지하였고, 이로 인한 사망자 수는 전체 교통사고 사망자 수의 72.2%를 차지하고 있다. 운전부주의에는 대부분 휴대전화, 졸음운전, DMB, 네비게이션, 라디오 등의 전자장비 조작 등의 운전부주의였다. 향후 차량의 안전에 대한 문제는 더욱더 민감해질 것이고 사고를 미연에 방지할 수 있는 안전운전 시스템에 대한 니즈가 급증할 것으로 예상된다.

최근 자동차는 단순한 이동수단의 기계에서 생활공간의 연장선으로 변화되고 있다. 정보통신 기술과의 융합에 의해 차 안에서도 인터넷, SNS 등을 통해 다양한 정보를 원 Rahul 없이 송수신할 수 있고, 스마트 기기 또한 지속적으로 사용할 수 있어 제 2의 생활 및 업무 공간으로 확대 및 변형되고 있다.

KPMG의 Global Automotive Executive Survey에서 자동차 구매에 영향을 미치는 요소의 변화를 보면, 연비, 안전성, 편의성은 기본적으로 자동차 구매에 높은 영향을 미치고 있지만 2014년 기준 전년도와 별다른 차이를 보이고 있지는 않다. 하지만 IT기기 지원, 인터넷 연결성 및 텔레메티스 부문은 2013년 대비 2014년도 선호도 결과는 확연하게 두드러지는 현상을 볼 수 있다.

차량용 안전장치의 경우, 이전에는 충돌 후 사고 피해를 경감하는 수동 안전(Passive Safety) 개념이 주류였다면, 최근에는 운전을 지원하고 사고를 미연에 방지하며 사고가 발생하더라도 피해가 확대되는 것을 방지하는 능동안전(Active Saf
초기의 안전벨트, 에어백, 충격흡수차체 등과 같이 자동차 사고가 발생하였을 때 피해를 최소화하기 위한 수동적인 시스템에서 사고의 회피를 위한 시스템 (ESC, EPS 등), 주변 차량 및 차선 감지를 통한 안전성 향상 시스템(FCW, LDWS 등), 차량 간 거리 측정 등을 통한 무인 자동 운행(ACC 등) 시스템 등으로 발전하여 왔다.

자료: Global Automotive Executive Survey, KPMG, HMC투자증권

<그림 3-6> 자동차 안전시스템의 발전 방향

자료: '지능형 자동차용 영상인식 SoC 기술동향', 한국전자통신연구원, 2012

안전성과 편리성을 추구하는 독특한 자동차는 ‘지능형’이라는 수식어로 대변되
어차세대 자동차는 ‘지능형 자동차’로 인식되고 있으며, 지능형 자동차는 각종 기능을 개발 및 탑재하여 운전자의 편리와 안전을 도모하고 있다. 따라서 향후에는 수동 조작이 필요 없는 자율 주행을 목표로 각종 안전 지원 기술들이 속속 개발될 것이다.

<그림 3-7> 지능형 자동차 기능들

자료: ‘지능형 자동차용 영상인식 SoC 기술동향’, 한국전자통신연구원, 2012

국내외 시장에서 정책적으로 자동차 관련 안전규제 및 법규화가 계속 강화되고 있는 상황이다.

자동차 기능 안전성 국제표준으로는 ISO 26262와 오토사(AUTOSAR)가 대표적인 규제이다. 이 외에도 안전관리를 위해 미국은 FMVSS(Federal Motor Vehicle Safety Standards)를 두고 있고, 자기인증 시스템(Self-certification System)을 시행하고 있으며, 유럽은 독일을 중심으로 통일기술표준(ECE Regulation) 및 E-Mark를 시행하는 등 여러 신규 기준의 제정을 통해 기술기준을 강화하고 있다.

또한 NCAP를 중심으로 각국의 규제 현황을 달리하여 다양한 안전제품에 대한 의무장착을 추진하고 있다. 현재 한국, 미국, 일본, 유럽은 AEBS, DRL(Daylight Running Light), BAU(Back-up Aid) 등 다양한 안전제품에 대한 의무장착 로드맵을 준비하고 착실히 시행하고 있다.

우선 트럭 등의 특수 차량을 시작으로 AEBS, LDWS 등의 안전사양의 장착이 의무화될 예정이고, 2012년에는 미국, 일본에서, 2013년에는 유럽에서 트럭을 대상으로 AEBS와 LDWS의 의무장착이 시작되었다. 2019년에는 미국, 일본, 유럽 모
두 AEBS가 모든 신규 차량에 의무 장착이 될 것이다.

<그림 3-8> 차량 안전제품에 대한 의무장착 로드맵

자료: 스마트카 IP활용 및 리스크 대응 이슈리포트, 한국지식재산전략원, 2014

자동차 관련 산업은 앞서 서술한 여러 가지 다양한 요인들로 인하여 전반적인 자동차 관련 시장이 변화하고 확대되고 있다.

이러한 외부환경적인 요인들에 국내 자동차 관련 업체들은 신속하게 대응할 필요가 있으며, 세계 최고수준인 IT 인프라를 바탕으로 지능형 자동차 관련 기술에서 경쟁력 확보해야 하고, 풍부한 생산경력을 지닌 숙련된 노동력과 국내 인건비도 빠르게 상승하고 있음에도 불구하고 선진업체들의 고비용 구조 고착화로 인해 가격경쟁력이 약해진다. 또한 국내 글로벌 완성차업체의 존재와 해외 시장 다변화로 인한 다양한 시장에서의 수출마케팅 능력이 확보되어 있다는 점은 국내 자동차 관련 부품업체들이 가장 강점이라고 생각한다.

반면 국내 자동차부품 업체들은 완성차업체에 대한 의존도가 높은 점과 핵심기술이 글로벌 부품업체에 비해 상대적으로 부족한 점이 약점으로 볼 수 있으며, 이러한 문제는 미래형 지능형자동차의 핵심부품에 대한 원천기술력이 상대적으로 낮아 공급자에 대한 교섭력이 약해지는 상황이 도래한다. 따라서 핵심부품을 개발할 수 있도록 연구개발 비용을 최대한 늘리고 적극적인 정부의 지원 정책이 절실하다.

- 21 -
히 요구되는 바이다.

또한 국내 대부분의 완성차업체들이 외국계 자본에 인수된 이후 부품 국산화율이 낮아지고 있다. 주요 핵심 부품들은 해외에서 공급 받으므로 부품업체들의 경쟁력을 높일 수 있는 완성차 업체들의 역할이 축소되고 있는 상황이고, 중국 부품 업체들이 해외 M&A를 통해 기술력을 획득하는 점도 국내 부품업체들에게는 위협적인 요인이 된다.

<그림 3-9> 자동차 부품 산업의 SWOT 분석

<table>
<thead>
<tr>
<th>Strength</th>
<th>Weakness</th>
</tr>
</thead>
</table>
| • 수준 높은 IT 융합기술
• 글로벌 완성차업체 존재
• 기술인력의 능동 적극적
• 해외 시장 수출마케팅 능력 보유
• 글로벌 경쟁력이 우수한 전기/전자 업체 등 존재 | • 해상부품 원천기술 및 인프라 부족
• 완성차업체의 의존도 높음
• 연구개발 비용 낮음 |

<table>
<thead>
<tr>
<th>Opportunity</th>
<th>Threat</th>
</tr>
</thead>
</table>
| • 전장화, 경량화, 소형화
• 고성 사양을 대비한 자동차 개발 요구
• 차내 생활공간으로 활용도 높이기
• 안전성, 환경성에 대한 의식 증대
• 안전규제에 대응한 안전제품 의무적화 | • 해외 완성차업체들의 부품 국산화율 낮아짐
• 신용적 부품업체들의 해외 M&A를 통한 경영력 높여짐 |

제2절 시장동향

1. 국내외 시장동향

가. 해외 시장동향

해외 글로벌 완성차 업체 및 자동차부품 업체들은 출품을 방지하기 위한 운전 자 상태 감시 시스템을 다방면에서 연구해 왔고 그 중 일부 제품은 실제 차내에 탑재되어 판매하고 있다.

그렇지만 비용이나 검출 정확성 등에서 문제가 있어 본격적으로 보급되지는 못하고 있는 상황이다.
현재 운전자 상태 감시 시스템 분야에서 선도적이 위치에 있는 일본의 자동차 부품업체인 AISIN SEIKI에 의해 개발해 도요타의 고급차량인 렉서스 LS460 차종에 운전자 상태 감시 시스템을 탑재하였다.

일본에서는 글로벌 자동차부품업체인 AISIN SEIKI와 Denso가 시장에서 선도적인 위치를 차지하고 있고, 유럽 및 미주 지역에서는 보쉬가 활약하고 있다.

시장에 출시되고 있는 운전자 상태 감시 시스템 제품을 업체별로 알아본다.

핸들 중앙에 설치된 카메라로 운전자를 활용해 얼굴의 17개 특징을 추출하는 기능을 갖고 있다. 얼굴의 방향이나 눈의 열린 상태를 감지하여 줄음운전이나 한 눈을 팔면서 하는 운전 등이 벌어지면 운전자에게 경고를 한다. 눈꺼풀의 열린 정도, 눈의 감싸인 횟수, 눈의 불규칙한 움직임 등 줄음의 징조를 다각적으로 파악할 수 있다는 점 강점이다. 운전자마다 눈 감싸임 주기나 눈이 움직이는 주기가 다르기 때문에 30초 정도로 운전자의 기본 패턴을 파악한 뒤 개인별 최적화 상태를 알아내는 것이다. 줄음 수준은 총 6단계로 인식된다.

줄음 단계에 따라 경고 내용도 바뀐다. 강한 줄음 수준이라고 판단되면 충돌방지 장치를 작동하는 시기를 앞당기거나 강하게 작동하게 된다. 약한 줄음단계의 경우 단순히 에어컨을 세게 켜는 수준에 머무른다.

<그림 3-10> 덴소의 DSM의 구성 모식도
2010년 국내에도 소개됐던 패신저 아이 시스템은 인스트루먼트 패널 위에 위치한 카메라가 운전자의 얼굴 이미지를 추적해 졸음운전 여부를 판단한다. 휴식이 필요하다면 속도계에 커피가 가득 찬 잔이 나타나고 동시에 내비게이션 맵에 가까운 커피숍을 표시한다. 경고 기능은 시각, 청각, 촉각 등 다양한 방식으로 전달된다.

또 다른 일본 기업으로 AISIN SEIKI가. 이 기업의 운전자 상태 감시 시스템은 도요타의 Lexus LS/GS, Crown Majesta/Royal Saloon/Athlete/ Hybrid에 탑재되고 있다.

이 제품은 핸들에 카메라 모듈을 설치하고 좌석에 압력 센서와 진동 장치를 내장한 뒤 운전자의 호흡이나 맥박 등을 감지한다. 카메라만으로 운전자의 상태를 파악하려면 운전자가 줄고 있는지, 실신하는지 구별할 수 없다. 그래서 카메라와
압력 센서를 통해 종합적인 판단으로 졸음 혹은 실신상태를 구별하려는 의도이다. 만약 실신 상태가 검출되면 자동으로 소방서 등에 긴급 통보할 수 있다.

가벼운 졸음의 경우 음성 안내만으로 끝나지만, 깊은 졸음운전 및 실신 등 비상사태가 검출되면 음성 안내뿐만 아니라 좌석을 진동시키며 사고를 일으키기 전에 운전자를 깨우는 기능이 있다.

<그림 3-13> 아이신세이키의 Driver Monitoring System 데모시스템

나. 국내 시장동향

차량 운전 중 운전자 얼굴 방향과 눈동자 상태 등을 감지해 안전 운전을 돕는 DSM 시스템은 차세대 스마트카 핵심 기술로 주목받고 있지만, 현대차가 개발한 DSM 시스템은 모두 일본 부품과 특허 기술이다.

기아차도 ‘K9’에 DSM 시스템을 장착하려 했지만, 도요타, 덴소 등 일본 업체들의 특허 장벽으로 인해 시스템 탑재가 무산된 상황이다.

차량 IT 융합 및 스마트카 시대에 대응하기 위해 완성차와 부품 대기업은 물론 중소기업들의 원천 기술 확보가 중요해졌지만, 국산화는 지지부진하다.

특히 자동차 부품 관련 중소기업들은 국제 특허 장벽에 대한 이해 부족과 개발 과정에서 반드시 준수해야 하는 자동차 기능안전 국제 표준 ‘ISO 26262’에 대한 정보 또한 부족하고 전문 인력도 없기 때문에 연구개발의 어려움이 있다.

이와 같은 상황은 국내 완성차와 부품 대기업은 물론 중소기업들이 공통적으로 겪고 있는 현상이다. 특히 국내 완성차 및 부품 대기업들은 해외 업체들의 특허 장벽으로 인해 사용환경이 더딘 상황이다.

이에 따라 해외 업체와의 기술 격차가 확대되고, 외산 부품 종속 현상은 더욱 심해질 전망이다.
2. 국내외 관련 업체 및 제품 동향

운전자 상태 감시 시스템 시장에서는 글로벌 자동차부품 업체인 AISIN SEIKI, Denso, 보쉬 등이 시장을 선도하고 있는 것으로 조사되었다.

국내외 관련 업체 및 동향에서는 개발연구 중인 기술이나 에프터마켓에 출시된 제품을 중심으로 알아본다.

국내 대표 자동차 부품 업체로 현대모비스는 2010년도에 운전자 상태 감시 시스템을 개발했지만 문제로 차량에 탑재를 하지 못하고 있는 상황이다.

현대모비스(주)가 개발한 DSM시스템은 얼굴인식엔진 (FSE, Face Sensing Engine)을 활용해 운동자의 움직임과 눈꺼풀의 반응을 측정하는 방식이다. 얼굴인식엔진 기술을 응용해 차 내부에 장착한 적외선 카메라로 운전자의 눈동자의 움직임과 얼굴의 정면방향 여부 등의 상태를 파악한다. 운전자의 눈 감싸임과 얼굴 방향패턴을 측정해 정상적인 상태가 아닌 경우 즉시 경고음을 울리고 시트에 강한 진동을 보내줌으로써 졸음운전을 하는 운전자에게 사고위험 경고를 알린다.

또한 운전자의 눈 감싸임과 얼굴 방향패턴을 측정해 정상적인 상태가 아닌 시 경고음을 울리고 시트에 강한 진동을 줄으로써 졸음운전을 하는 운전자에게 사고 위험 경고를 알리기도 한다.

<그림 3-15> 현대모비스 DSM 시연모습

그리고 독일의 콘티넨탈은 2014년 2월 시카고 모터쇼에서 ‘Driver Focus Car’로 명명된 컨셉카를 공개했으며, 이 차량은 적외선 카메라를 이용해 운전자의 시
선, 머리 움직임을 추적하고 운전자의 주의 산만이 감지되면 차량 내부를 둘러싼 LED 조명을 활성화시켜 운전자에게 경고를 보내는 제품이다.

<그림 3-16> 콘티넨탈의 Driver Focus Car

또한 일본 알프스전기에서 개발한 운전지원시스템은 운전자 위쪽에 장착된 IR 기반 영상으로부터 화상처리를 하여 운전자의 움직임, 시선과 동공상태를 검출하여 운전자의 의도와 기분을 인식하고 이에 맞춰 운전지원을 실시한다. 멀티 모달 센서로 네비게이션을 조작한다.

<그림 3-17> 알프스 전기 개발제품

이처럼 세계의 유수의 기업들은 ADAS 시장을 선도하려고 활발한 움직임을 보이고 있다. 다음은 연구개발 중인 차세대 운전자 상태 감시 기술들이다.
첫째, 로잔공대 연구팀과 프랑스 자동차 메이커인 ‘PSA 푸조 시트로엥’과 제휴해 차량용 ‘감정 탐지기’(Emotion detector)를 개발했다. 이 감정 탐지기는 카메라에 촬영된 운전자의 얼굴 표정을 비교·분석해 감정 상태를 파악하도록 구성돼 있다.

감정탐지기의 작동 원리는 자동차 헤드 루프 장착 적외선카메라가 운전자의 얼굴 표정을 촬영하면 이를 계속 모니터링하고 비교분석해 감정의 기복을 식별해 내는 것이다.

현재까지 사진과 비디오 영상을 이용한 두 차례 실험이 성공적으로 이뤄졌지만 아직까지는 인간의 보편적인 7가지 감정(공포, 분노, 기쁨, 슬픔, 혐오, 놀람, 의심)을 모두 인식할 수 있는 단계는 아니다. 사람마다 감정 표현 방식이 다르고 얼굴에 나타나는 표정 역시 제각각이기 때문이다.

지금까지는 얼굴 표정에서 분노와 혐오 등 두 가지 감정을 읽어내는 데 성공했고, 이를 토대로 ‘자기학습’이 가능한 보다 진보된 ‘얼굴 모니터링 알고리즘’을 개발 중이라고 한다. 차량용 감정탐지 기술의 상용화를 위해 시범운영 계획에 있다. 감정탐지 기술은 자동차의 운전자 지원 시스템에 접목하면 보다 안전하고 편안한 주행이 가능할 것으로 전망하고 있다.

<그림 3-18> 차량용 감정 탐지기

운전자의 모습이나 상태를 파악해 안전 운전에 활용하는 사례는 점점 늘고 있
다. 동공의 상태, 눈 감박거림 횟수, 머리 기울기 등을 관찰해 경고음을 내보내거나 시트를 진동시키는 ‘졸음운전 감지장치’는 이미 기본 설비가 된 지 오래다. 일본 도요타의 ‘운전자 상태 모니터링(DSM, Driver State Monitoring)’ 시스템에는 로잔공대의 감정탐지기와 흡사한 운전자 지원 설비가 갖춰져 있다. 3차원 안면인식 장치를 이용해 운전자의 입가, 눈썹, 눈꼬리 등 얼굴의 미세한 변화를 파악하고 감정 상태까지 유추해 경고음을 내보낸다.

둘째, 이탈리아 페라리 SpA는 운전자의 논리가 분석해 그 결과에 따라 주행장치 조절하는 시스템을 개발하고 있다. 운전석 머리받침대 속에 장착된 무선의료장비로 운전자의 논리를 측정 및 분석한 후 만약 위험 상태가 나타나면 자동차의 속도를 자동적으로 제어하는 기술이다. 페라리 SpA는 이미 2012년 미국 특허청에 관련 기술에 대한 특허를 신청한 바 있다.

셋째, 미국 포드자동차의 경우 안전벨트에 심장 박동과 호흡을 감지할 수 있는 센서를 달아 운전자의 스트레스를 체크, 주행시스템에 반영하는 장치를 개발 중이다. 만약 심박 수가 상승하는 등 스트레스 지수가 높은 것으로 파악되면 운전시스템을 자동으로 ‘안전 모드’로 바꿀 수 있는 시스템이다.

또한 포드자동차는 국제전자제품박람회(CES)에서 자동차 시트에 장착된 특수장치를 통해 운전자의 혈당을 모니터링하는 시스템을 선보이기도 했다. 혈당수치가 정소보다 많이 떨어지거나 심장에 이상 징후가 나타날 경우 운전자에게 경고하거나 차를 자동 제어하는 장치라고 한다.

마지막으로, BMW사 역시 미국 서던캘리포니아대(USC) 연구진과 함께 의료모니터링과 주행지원시스템을 연계하는 기술을 개발 중인 것으로 알려진다. 혈당 수치가 떨어지거나 심장에 이상 징후가 나타날 경우 운전자에게 경고하거나 차를 자동 제어하는 장치라고 한다.

지금까지 조사한 운전자 상태 감시 시스템들은 모두 비포마켓을 위한 제품이었지만, 현재 여러 제품들이 에프터마켓에 출시되어 판매되고 있다.

대표적으로 일본의 Trywin사는 줄음 방지 장치인 Dramoni를 개발하였다.

기존의 카메라 방식 및 각종 센서방식은 설치가 복잡하고 가격이 비싸며 운전자의 행동이 제한되는 등 여러 문제점이 있었다는 점을 열두하여 야마하운진자 등의 커뮤니티에서 운전 동작을 감지해 줄음운전을 7단계로 구분한다. 운전자는 자동차를 운전할 때 햌들의 조절, 액셀 발기, 거울 확인 등 기본적인 동
작을 항상 하고 있지만 집중력이 저하되면 기본 동작을 하지 않게 된다는 점에 착안했다.

<그림 3-19> Trywin의 Dramoni

그리고 국내 제품으로, 2014년 국내 차량용 액세서리 전문 제조기업인 (주)디나로그는 자동차사고 중 가장 높은 사망률을 기록하고 있는 졸음운전으로 인해 유발되는 사고를 미연에 방지하고, 운전자와 동승자의 안전을 확보하는 졸음운전 감지 및 경보 시스템 ‘뷰메이트(VUEMATE) DL220A’를 출시했다.

<그림 3-20> 디나로그의 뷰메이트 DL220A
뷰메이트 DL220A는 공간 제약이 적은 사이즈로 ARM코어 CPU를 탑재했고 200만 화소의 CMOS 카메라 센서와 적외선 LED를 적용했다. 정상 운전 상태와 이상 동작 상태를 비교 연산하는 DEMS 카메라 기술로 졸음운전의 징후인 눈 감는 시간을 계산하여 경고로 알려주며 정상적인 전방주시 운행 자세를 벗어난 운전자의 이상 동작을 감지해 납아로운 비저음과 고휘도 LED 점멸로 주의를 환기 시킨다. 이 제품의 감지 기능은 운전자가 졸음 인식 범위 내에서 1초 이상 눈을 감는 경우와 고개를 1-2초간 아래로 8도 이상 고개를 숙일 경우의 졸음 감지, 운전자가 얼굴 인식 범위 내에서 8도 이상 숙일 경우의 전방 미주의 감지, 운전자 얼굴이 상하좌우 방향으로 인식 범위를 벗어날 경우의 얼굴 이탈 감지 등으로 구현된다. 운전자의 위치와 거리, 안면과 눈을 지속적으로 모니터링 함으로써 졸음이나 전방 미 주시, 시선 부주의, 얼굴 이탈 등을 감지하고, 비정상적인 상태가 감지되면 LED와 강력한 부저로 위험을 조기에 경보해 준다.

마지막으로 태국 커피 프랜차이즈인 ‘카페 아마존’에서 졸음운전을 예방할 수 있는 ‘Drive Awake’라든 앱을 만들었다. 차량에 휴대폰을 거치면 안면인식프로그램을 통해 운전자의 눈동자 움직임을 감지하고, 운전자의 졸음운전이 파악되면 시끄러운 경보음을 울려준다. 더 큰 사고가 나기 전에 커피 한잔 하고 잠을 깨라고 가까운 ‘카페 아마존’을 안내해주주는 서비스를 제공한다.

<그림 3-21> 카페 아마존의 앱 Drive Awake

3. 관련 정책 및 제도

가. 표준화 현황

자동차가 전자기기화 되면서 기계장치보다 오류를 내재할 가능성이 높고 대형
사고로 이어질 수 있기 때문에 안전에 대한 각종 규제들이 표준으로 제정되고 있다.

대표적인 규제는 ISO 26262와 오토사(AUTOSAR)다.

ISO 26262는 자동차 기능 안전성 국제표준으로, 소프트웨어와 전자부품의 오류로 인한 사고를 방지하고 전장(電裝)시스템의 안전성을 확보하기 위해 독일의 주도로 국제표준화기구(ISO)가 2011년 11월 제정한 것이다. 세계 10개국 27개 자동차 제조사 및 부품 공급사가 개발에 참여했다.

이 규제가 발표되기 이전에 자동차 업계는 IEC 61508라는 표준을 준수했으며, 이는 일반 전기전자 장치의 안전에 관한 포괄적 규격으로, 화학공장과 같이 주로 공정 산업을 대상으로 적용되었던 것이다. ISO 26262는 IEC 61508를 자동차에 맞도록 특화시킨 표준이라고 볼 수 있다.

ISO 26262는 기능 안전성 관리, 구상 단계, 제품 개발 (시스템 레벨, 하드웨어 레벨, 소프트웨어 레벨), 생산 및 운영, 지원 프로세스 등 총 10개의 파트로 구성되어 있으며 총 43개의 요구사항 및 권고 사항 등이 총 400페이지에 담겨 있다. 하드웨어와 소프트웨어 모두 V모델 개발 프로세스를 따르고 시스템을 설계한 후 하드웨어와 소프트웨어 개발이 병행된다.

또한 프로세스, 위험 평가(risk assessment), 방법론(method) 등 3가지를 규정하고 있으며, 그 중에서도 기능 안전 활동은 프로세스 개선 활동이라고 불릴 정도로 프로세스가 중요하다. 그리고 안전성보전등급을 위험에 노출 가능성(probability of exposure), 위험의 잠재적 심각도(potential severity), 통제 가능성(controllability)에 따라 차량 안전성 보전등급을 결정한다.

이 규제는 현재 첫 번째 버전이 나와 있고, 2015년 두 번째 버전이 선보일 예정이다. 두 번째 버전에는 버스, 트럭, 원동기 등 특수 자동차 및 차량용 반도체 (마이크로 컨트롤러) 등에 대한 규격도 포함될 것으로 전해지고 있다.

오토사(AUTOSAR)는 ‘개방형 자동차 표준 소프트웨어 구조(AUTomotive Open System ARchitecture)’의 줄임말로, 차량 전장부품용 임베디드 소프트웨어 사용 급증에 대응하기 위해 만들어진 표준화된 플랫폼이다.

최초에는 BMW, 다임러, 보쉬, 콘티넨탈, 폴크스바겐이 논의하고 있었으나 지난 2002년 지멘스 VDO가 합류하며 2003년에 공식적으로 받아들여졌다. 그 후 포드, GM, 도요타, 푸조가 함께 참여하고 콘티넨탈이 2007년 지멘스 VDO를 인수함에
따라 9개 회사가 핵심을 이룬다. 2015년까지 대부분 자동차 SW가 오토사 기반으로 소프트웨어를 개발할 것으로 전망된다.

CMMI나 A(Automotive)-SPICE와 같은 소프트웨어 품질 보증을 위한 개발 프로세스도 따라야 한다. CMMI는 미국 국방성의 지원 아래 카네기 멜론 대학 소프트웨어 공학연구소(SEI)가 소프트웨어 CMM과 시스템 엔지니어링 CMM 등의 요소를 통합해 개발한 것이다. A(Automotive)-SPICE는 소프트웨어 개발 표준인 SPICE(Software Process Improvement Capability Etermination)를 자동차에 맞게 변형한 것이다. CMMI는 주로 미주에서, A-SPICE는 유럽에서 주로 준용한다.

나. 안전규제 현황

국내외에서 점진적으로 의무화를 추진하고 있는 자동차 관련 안전규제 및 법규화는 스마트 자동차의 안전 기능을 선택이 아닌 필수요소로 변화시키고 있다.

유럽의 신차안전성 평가프로그램인 Euro NCAP 의 13~15년까지의 로드맵을 살펴보면 안전한 차량 이미지 확보를 위한 5Star 등급을 위해 능동 안전 시스템과 안전장비를 적용해야 하고, 한국, 미국, 유럽, 일본은 AEB(Automatic Emergency Braking), DRL(Daytime Running Light), BAU(Back-up Aid), LDWS(Lane Departure Warning System), TPMS(Tire Pressure Monitoring System), ESC(Electronic Skid Control) 등 다양한 제품군에 대한 의무 장착 로드맵을 준비하고 착실히 시행하고 있다.

<그림 3-22> 유럽의 자동차 규제 법안 계획

자료: Frost & Sullivan, 2013
다. 정부지원 계획

지식경제부는 ‘산업융합원천기술개발사업’을 통해 국가 성장전략에 기반한 전략 기술 분야의 핵심 원천 기술개발을 지원함으로써 미래 신산업(IT 융합, 나노 융합, 바이오, 로봇 등), 주력 기간산업(자동차, 조선, 섬유의류 등), 정보통신 산업(전자정보디바이스, 정보통신 미디어 등)의 경쟁력을 제고 및 육성할 계획이다. 올해 지원 규모는 약 8,775억 원이며 특히 중소 및 중견 기업에 대한 산업 원천 R&D 신규 지원 비중을 강화하며 R&D와 표준화, 특허화의연계 과제 기획을 활성화할 계획이다.

또한 한국산업기술평가관리원(KEIT)은 우리나라 글로벌 100대 부품 업체 중 2개사뿐인 스마트카 관련 기업의 수를 2017년까지 4개 업체로 늘릴 계획이다. KEIT는 자동차와 타 산업간 융합, 중소기업 지원 강화, 교통사고 저감, 안전규제 대응이라는 방향성을 가지고 2013년 보행자 보호를 위한 자동 긴급제동 시스템, 운전 미숙자 지원을 위한 자동 차선 변경 시스템 원천 기술개발에 각 7억 원씩의 예산을 책정했으며, 운전사 전방 주시 집중도 향상을 위한 초점거리 75m 이상의 HUD 시스템 개발에도 11억 원을 지원할 예정이다.

또한 2014년 7월 산업통상자원부에서는 제조업 혁신 3.0 전략 후속 조치로써 ‘창조경제 산업엔진 프로젝트 발전계획(안)’ 수립하기로 결정했다.

이 산업엔진 프로젝트는 산업 전반에 파급효과가 크고 고급 일자리를 만들 수 있는 성장전략으로, ‘창조경제’ 실현을 위하여 비교우위에 있는 제조업에 신기술, 정보통신기술(ICT), 서비스 등을 융합하는 핵심기술을 개발하고, 사업화, 인프라, 제도개선 등을 통해 새로운 산업 생태계 조성의 중요성을 강조할 것이다.

또한 창조경제 산업엔진 프로젝트 발전계획과 산업기술 연구개발사업화(R&BD) 전략수립과 연계를 강화할 수 있는 방안을 논의하여, 국내의 글로벌 산업경쟁력을 제고할 수 있는 실효성 있는 전략을 만드는 계획안이 될 것이다.

산업엔진 발전계획을 수립할 때 다음과 같이 크게 세 가지 방향성을 제시했다.

첫째, 원료, 소재·부품, 완제품 등 부가가치 사슬별 국내외 기술적·경제적 특성 및 국내 연구역량 등을 고려한 전략적인 기술개발을 요구했다.

둘째, 산업엔진 추진에 필요한 연구장비 구축, 인력양성 등 기술 인프라 구축도 병행하여 신산업을 창출하는 지원기반을 조성하는 것을 당부했다.
셋째, 시장창출을 위해 기술개발단계로부터 산업생태계 주체들의 공동참여 및 이를 뒷받침할 법·제도, 세계 등 종합 지원체계를 구축하는 내용을 담을 것을 요청했다.

제3절 시장전망

1. 해외 시장전망

시장조사 기관인 Strategy Analytics에 따르면, 스마트카(지능형 자동차) 시장은 2010년 158조 6천억원에서 2019년 301조 천억원 규모로까지 증가되며, 연평균 9.3%의 성장률을 달성할 것이라고 한다. 그 중에서도 전자장치의 비중은 2020년까지 50% 이상 확대될 것으로 전망하고 있기 때문에 ADAS의 시장 또한 급속도로 확대될 것으로 예상하고 있다.

Research & Market의 보고서에 의하면, 글로벌 ADAS 시장은 2012년부터 오는 2016년까지 22.59%의 고성장을 지속할 전망이다.

이러한 성장률을 뒷받침하는 원인으로는 국제적인 안전규제가 강화되고 수요자들의 안정성과 편리성에 대한 인식이 높아지면서 자동차의 안전시스템 탑재의 증가 현상이 나타나고, 최근 보급형 자동차까지도 ADAS의 탑재가 광범위하게 증가하고 있는 추세이기 때문이다.

이렇게 수요가 확대되면서 시스템의 초소형, 고신뢰성 및 고성능화 요구가 높아질 것이고 이에 대응하기 위해 접이나 센서 등의 핵심부품에 대한 연구개발이 활발하게 진행되고 있다.

ABI 리서치의 시장전망을 살펴보면, 2012년 글로벌 ADAS 시스템 시장이 16조 6천억원에서 연간 41%의 성장률로 2020년에는 261조원까지 성장할 것으로 전망했다.

ADAS 시스템의 글로벌 시장동향을 파악하기 위해 대표적으로 미국과 유럽의 상황을 살펴볼 것이다.

2014년 Frost & Sullivan의 보고서에 의하면, 미국의 ADAS 시장은 다양한 기술의 적용으로 전체 매출액 기준 2012년 2조 1,900억원에서 연평균 18.6%로 성장하여 2020년에는 8조 5,600억원으로 2012년보다 약 4배의 시장이 형성될 것으로
전망하고 있다.

2020년까지 ADAS 기술에 관한 하드웨어 가격은 대부분의 시스템 가격 하락으로 동반 하락할 것으로 예측하고 있다.

<그림 3-23> 미국의 ADAS 시장규모 및 전망

![ADAS Total Revenue, 2020](image)

또한 유럽의 경우는 2014년 Frost & Sullivan에서 발간한 시장보고서에 따르면 전체 매출액 기준 2012년 2조 4,360억원에서 연평균 20.3%로 성장하여 2019년에는 8조 8,900억원으로 시장이 형성될 것으로 예측하고 있다.

승용차 ADAS는 소비자의 안전성과 편의성에 대한 인식이 자리 잡으면서 2019년까지 크게 증가할 것으로 예상하고 있고, 이러한 ADAS 패키지의 판매 증가는 가격을 다운시키는 요인이 될 수 있다고 밝혔다.

Global Insight 보고서에서는 영상기반 ADAS 시스템은 전체 ADAS 시스템 대비 약 25%정도 차지하고, 운전자 상태 감시 시스템 시장규모는 2007년 Global Insight 및 KIET가 국내외 지능형 시스템 시장규모를 추산한 자료에 따라 2013년 기준 영상기반 ADAS 시스템 시장규모의 약 9.8%로 보고 있다.

따라서 세계 운전자 상태 감시 시스템의 시장규모는 2012년 기준 약 4,070억원으로 연평균 42.5%로 급속도로 성장하여 2020년도에 약 6조 3,950억원 규모로 확
대체 것으로 추정된다.

<그림 3-24> 유럽의 ADAS 시장규모 및 전망

![그림 3-24 ADAS 시장규모 및 전망](image)

<그림 3-25> 세계 DSM 시장규모 및 전망

![그림 3-25 DSM 시장규모 및 전망](image)

자료: Global Insight 자료로 KIET 재작성, 2007

자동차 산업의 산업특성 상 전후방 산업 간의 연관 및 파급효과가 크기 때문에
운전자 상태 감시 시스템 또한 지능형 자동차의 수요 증가에 맞춰 고속 성장이 전망된다.

2. 국내 시장전망

2014년 기준 국내 운전자 상태 감시 시스템은 일본의 도요타, 독일의 폭스바겐, 벤츠 등의 수입고급차 또는특수차량의 일부만 탑재되어 있기 때문에 시장이 형성되어 있다고 판단하기가 어려운 실정이다.

따라서 해외시장 규모를 산정한 방법으로 국내 운전자 상태 감시 시스템의 시장을 ADAS 시장의 자료를 바탕으로 잠정적으로 추정해 본다.

2012년 Frost & Sullivan의 보고서에 의하면, 국내의 ADAS 보급률이 2011년 약 4.8%에서 2018년 약 75.7%까지 증가할 것으로 예상했다.

국내 ADAS 시장은 2012년 ADAS 매출액 기준 2011년 276억원에서 연평균 33.9%로 성장하여 2018년에는 5,096억원에 도달할 것으로 전망하고 있다.

이 전망치는 2011년보다 약 18배 큰 시장 규모이고, 2018년도에는 시스템 가격이 하락함과 동시에 사고를 미연에 방지할 수 있다는 ADAS에 대한 소비자의 인식 확산으로 인한 수요 증가가 업체들의 매출액 증가로 이어지는 원인으로 보고 있다.

<그림 3-26> 국내 ADAS 시장규모 및 전망

국내 운전자 상태 감시 시스템의 시장규모는 2011년 기준 약 7억원으로 연평균 50.9%로 고성장하여 2018년도에는 약 125억원 규모로 확대될 것으로 전망된다.

<그림 3-27> 국내 DSM 시장규모 및 전망

![Diagram](image)

운전자 상태 감시 시스템은 지능형 자동차의 수요 증가에 맞춰 고속 성장이 예상되며, 국내 산업의 강점인 정보통신과 전자산업을 발판으로 하여 지능형의 다양한 센서의 개발을 촉진시켜 부품 및 제품의 국산화를 통해 수입대체 효과를 나타낼 것으로 사료된다.
제4장 결론 및 시사점

최근 자동차의 트렌드는 지능화, 전장화, 경량화로 요약할 수 있다. 이러한 자동차 산업의 핵심경쟁력의 변화는 산업내의 가치사슬의 변화뿐만 아니라 산업구조 재편으로 이어지며, 완성차 및 부품·소재 공급기업들에 위기와 기회를 동시에 제공할 수 있다.

고령사회 진입, 안전성 및 편의성에 대한 의식 증대, 제2의생활공간으로서의 변화, 국제 안전규제에 대응한 차내 안전제품 의무장착화 등의 여러 환경적인 요인으로 자동차의 첨단운전자지원시스템(ADAS)의 기술들에 대한 연구개발이 활발하게 진행되고 있다.

이러한 가운데 운전자 상태 감시 시스템(DSM)에 관련한 기술과 제품들이 꾸준히 개발되고 있으며, 글로벌 기업인 AISIN SEIKI, Denso, 보쉬 등은 이미 고급 차량 및 특수차량에 탑재하면서 동시에 차세대 기술들을 지속적으로 개발하고 있다.

그러나 국내의 상황은 핵심원천 기술의 부재, 자동차 기능안전 국제표준에 대한 정보부족과 국제특허 장벽에 대한 이해의 부족 등의 요인으로 자체 개발한 시스템의 상용화를 미룰 수 밖에 없는 실정이다. 이는 해외 업체와의 기술격차가 확대되고 외산 부품 종속 현상은 더욱 심해질 것이다. 때문에 산학연이 협동하여 국제표준 및 안전규제에 대응할 수 있는 핵심 원천 기술 및 특히 회파기술을 확보할 수 있는 연구개발이 필요하다고 판단된다.

ABI 리서치의 시장전망을 살펴보면, 2012년 글로벌 ADAS 시장이 16조 6천억원에서 연평균 41%의 성장률로 2020년에는 261조원까지 성장할 것으로 전망했다.

그리고 운전자 상태 감시 시스템(DSM)의 세계 시장규모는 2012년 기준 약 4,070억원에서 연평균 42.5%로 급속도 성장하여 2020년도에 약 6조 3,950억원 규모로, 국내는 2011년 기준 약 7억원에서 연평균 50.9%로 고성장하여 2018년도에는 약 125억원 규모로 확대될 것으로 분석되었다.

운전자 상태 감시 시스템의 국내외 시장성 확대 가능성이 있기 때문에 범국가적인 지원 하에 핵심 원천기술인 센서, 반도체, 광학기술, 알고리즘 개발 등의 연구가 활발히 이루어져야 한다.

기술 및 제품개발에 있어 기존 운전자 상태 감시 시스템의 기술적인 한계를 극
복하는 것도 중요하지만, 빠르게 변하는 수요니즈를 지속적으로 모니터링하면서 유연적으로 대응하는 자세와 함께 보다 혁신적인 기술을 개발하는 것이 필요하겠다.

현재 운전자 상태 감시 시스템을 개발하고 있는 전문가 조언에 의하면, 운전자 상태 감시 시스템 기술개발에 기술적인 혁신이 더 이상 없다면, 자율주행 자동차가 출현하는 예정시기인 2020년경에는 사양기술 및 제품으로 전략할 수 있다는 가능성을 제시하였다.

그러나 운전자 상태 감시 시스템은 미래에 반드시 장착되어 할 기능 중 하나로서간주된다. 차량 내에서 첨단운전자지원시스템(ADAS)이 작동하는 중에도 스스로 해결하지 못하거나 완성도를 높이기 위해 운전자 상태 감시 기능을 이용할 수밖에 없는 상황이 발생할 것이다.

눈 감빡임, 얼굴 방향 등을 인식했던 운전자 상태 감시 시스템은 얼굴 표정을 인식할 수 있는 수준으로 기술이 발전하면서 운전자의 행동을 보다 정확하게 추정하고, 다른 시스템과 연계해 좀 더 예측 가능한 기능을 수행하게 될 것이다.

또한 다양한 편의 어플리케이션도 창출해낼 것이다. 졸음을 감지해 내비게이션에 가까운 커피숍을 소개하거나, 운전자의 기분을 파악한 적당한 음악을 켜는 등의 공조 시스템을 자동조정할 수도 있을 것이다.

향후 산업과 사회의 발전에 따라, 첨단 시스템에 익숙하지 않은 고령자를 필수적으로 고려한 자동화시스템을 설계하는 등의 다양한 수요층의 요구를 충분히 고려한 운전자 상태 감시 시스템을 개발한다면, 자율주행 차량 시대가 도래하더라도 기계적인 오작동에 대비할 수 있는 첨단운전자지원시스템(ADAS)의 보다 안전한 보조수단장치의 하나로써 사용될 것으로 전망된다.
<참고문헌>

5. 스마트카 IP활용 및 리스크 대응 이슈리포트, 한국지식재산전략원, 2014.
7. 운전자 심리가 교통사고에 미치는 영향분석 연구, 교통안전공단, 2013.