열전발전소자 및 Hermetic Sealing 기술동향과 전망

최성배, 윤성민, 강현무

2015. 11.

한국과학기술정보연구원
목 차

제 1 장 서론 .. 1

제 2 장 열전발전소 기술동향 분석 ... 3
 제1절 열전 및 열전발전소자의 개요 ... 3
 1. 열전소자의 개념 ... 3
 2. 열전 및 열전발전소자의 특징 ... 5
 3. 열전발전소자의 응용분야 ... 10
 제2절 열전발전소자의 기술 개발동향과 전망 ... 15
 1. 열전재료 기술의 개발 ... 15
 2. 나노기술 도입 ... 20
 3. 열전 나노선 ... 22
 4. 유기열전재료 ... 25
 제3절 국내 기술개발 동향 ... 27
 제4절 해외 기술개발 동향 ... 39
 1. 미국 ... 39
 2. 일본 ... 44
 3. 유럽 ... 53
 4. 기타 ... 57
 제5절 국내외 특허 동향 ... 60
 제6절 향후 기술전망 ... 65
제 3 장 열전발전소자의 활용분야 ... 71
 제1절 자동차 ... 71
 제2절 우주항공 ... 81
 제3절 에너지 ... 84
 제4절 기타 .. 86
 1. 무선 센서 네트워크분야 .. 86
 2. 소비재 분야 .. 88

제 4 장 Hermetic Packaging 및 Glass to metal Sealing (GTMS) 92
 제1절 Packaging 기술 및 발전 동향 .. 93
 제2절 Packaging 기술 동향 .. 96
 1. QFN (Quad Flat No lead) .. 96
 2. TSOP (Thin Small Outline Package) 97
 3. BOC (Board on Chip) ... 98
 4. MCP (Multi-Chip Package) ... 98
 5. 플립칩 (Flip Chip) .. 100
 6. SiP (System in Package) .. 100
 7. WLCSP (Wafer Level Chip Scale Package) 101
 8. POP (Package On Package) ... 101
 9. 팬 아웃 웨이퍼 레벨 패키지 (Fan-Out Wafer Level Package,
 Fan-Out WLP) ... 103
 10. TSV (Through Silicon Via) ... 104
 11. 인터포저 (Interposer) .. 105
제 5 장 열전발전의 산업 및 시장 .. 121
제 1절 열전발전 산업의 특성 및 변화요인 .. 121
 1. 에너지 효율 향상 .. 122
 2. 휴대용 전원 .. 124
 3. 융복합 발전 .. 125
 4. 무선통신의 발전 ... 127
 5. 핵융합분야의 열전발전 응용 ... 128
 6. 전자 부품의 소형화 ... 128
제 2절 열전발전 시장 전망 .. 130

제 6 장 열전발전관련 경쟁사 분석 ... 138
제 1절 경쟁사 분석 .. 138
제 2절 주요 경쟁사 분석 및 제품 동향 ... 141
 1. 우창엔지니어링 .. 141
 2. 피티씨테크 .. 144
 3. 테그웨이 ... 146
4. 애이스텍 ...147
5. LAIRD Technologies ...148
6. KELK ...151
7. FERROTEC ...153
8. Alphabet Energy ..155
9. EVIDENT THERMOELECTRICS (GMZ Energy)156

제 7 장 결론 ...160

<참고 문헌> ...163
그림 목차

〈그림 2-1〉 열전발전 효과와 열전냉각 효과 ...4
〈그림 2-2〉 열전발전소자의 작동원리 ...8
〈그림 2-3〉 열전 발전모듈의 구성 : (좌) 분할형, (우) 적층형10
〈그림 2-4〉 열전 성능 지수(ZR)에 따른 활용도 ...11
〈그림 2-5〉 BMW의 배기 배열을 이용한 열전발전 사례12
〈그림 2-6〉 Seiko社 손목시계에 적용된 열전발전모듈14
〈그림 2-7〉 온도에 따른 성능지수 Z ..18
〈그림 2-8〉 열전발전 지수의 발전현황(상온기준) ..20
〈그림 2-9〉 연세대 이우영 교수 연구팀의 연구 설명24
〈그림 2-10〉 박수동 박사팀의 열전발전 모듈 시제품 및 열전소재의

 ZT 온도 의존성 그래프 ...28
〈그림 2-11〉 1D 실리콘 열전소자의 구조 ...29
〈그림 2-12〉 CMOS 공정을 사용한 실리콘 열전소자 제작 순서 및

 마이크로 실리콘 열전소자 ...30
〈그림 2-13〉 실리콘 기반 열전소자의 출력 특성 ...31
〈그림 2-14〉 비스무스 텔루라이드계(Bi2Te3)와 탄소나노튜브 결합도32
〈그림 2-15〉 스크린프린팅 기술로 제작된 유연 열전소자34
〈그림 2-16〉 BSST의 'Y 모듈 " ...41
〈그림 2-17〉 eTEG HV37 thermoelectric power generator42
〈그림 2-18〉 AIST의 열전발전모듈 ..44
〈그림 2-19〉 Ba-Ga-Sn계 열전발전모듈 ...45
<그림 2-20> 카본나노튜브-고분자 복합재료 형성방법(위)과 전자현미경 사진(아래) .. 48
<그림 2-21> 인쇄법에 의해 제작한 플렉시블 열전변환 필름(왼쪽)과 발전능력 실험(오른쪽) .. 48
<그림 2-22> 철강의 폐열을 이용한 열전발전 실험시험 .. 49
<그림 2-23> 일본 Showa KDE에서 개발한 Mg2Si계 열전발전모듈. 50
<그림 2-24> 광발전 모드(좌)와 열발전 모드(우), 휘어지기 쉬운 기판 위에 제작한 디바이스 ... 51
<그림 2-25> 3차원 인쇄방식의 열전발전기 ... 55
<그림 2-26> Micropelt 사의 열전소자 ... 56
<그림 2-27> KAUST의 유연한 실리콘 위 열전 발전기 58
<그림 2-28> Thermoelectric system key challenges 66
<그림 2-29> 태양광, 압전, 열전 하이브리드 발전 소자의 개념도 70
<그림 3-1> 자동차 연료의 효율 .. 71
<그림 3-2> GM 사의 차량용 열전발전기 .. 73
<그림 3-3> GM Chevy Suburban 차량 TEG 개념도와 실제 장착 모습 73
<그림 3-4> Phase III 500W Bi2Te3 Planar TEG ... 74
<그림 3-5> Phase V 700W Bi2Te3 Cylinder TEG .. 74
<그림 3-6> Lincoln MKT에 장착된 TEG 와 65mph 정속운전 시 출력그래프 .. 75
<그림 3-7> Hi-Z에서 개발한 차량용 TEG ... 75
<그림 3-8> EGRu2008coolers generate 200W .. 76
<그림 3-9> 현대자동차 열전발전관련 자료 .. 80
그림 3-10 NASA Radioisotope 열전발전기 ..82
그림 3-11 Logmesh’s Logimote ..86
그림 3-12 ABB’s WiTemp wireless temperature transmitter87
그림 3-13 Kieback & Peter’s Valve와 Marlow’s EverGen TEG 88
그림 3-14 Plutonium Powered Pacemaker (1974)89
그림 3-15 Recharge Sleeping Bag ..90
그림 3-16 Micropelt 사의 TE-qNODE 와 Cooking sensor91
그림 3-17 PowerPot ..91
그림 4-1 Packaging 기술의 주요 기능 ...93
그림 4-2 Packaging 기술의 발전동향 ...95
그림 4-3 QFN 와 TSOP 모식도 ..97
그림 4-4 BOC 와 MCP 모식도 ..100
그림 4-5 플립칩과 SiP 모식도 ..101
그림 4-6 WLCSP 와 POP 모식도 ..103
그림 4-7 Fan-Out WLP 와 TSV 모식도105
그림 4-8 인터포저 와 유연 패키지 기술 모식도106
그림 4-9 Hermetic Packaging 예 ...108
그림 4-9 Glass to Metal Sealing (GTMS) 적용 공정 - Packaging ...115
그림 4-10 일반적인 열전발전모듈(좌)과 Semi-Rigid Skeleton (Enerkit 社) ...117
그림 4-11 열전발전모듈의 부식 예(Skutterudite)와 캡슐화118
그림 4-12 저온환경에 활용되는 캡슐화 기술119
그림 4-13 금속용기에 진공 밀봉된 열전발전모듈_최종형상(좌), SiGe
모듈(우) ...120

<그림 5-1> 열전발전 소자 및 시스템의 개발 ..124

<그림 5-2> 구글 글라스 ..125

<그림 5-3> 공격적 시각에서의 열전기술 시장 예측131

<그림 5-4> 전세계 에너지하베스팅 수량_단위 백만개(좌) 및 시장규모_단위 백만불(우) ...132

<그림 5-5> 2022년 에너지 하베스팅 시장 점유율133

<그림 5-6> 열전소자 시장전망 (IDTechEx “Thermoelectric Energy harvesting_2012“) ...135

<그림 5-7> 열전소자 시장전망 2012년 발표(좌)와 2014년 발표(우) ...136

<그림 5-8> 일본의 열전발전 디바이스 시장 규모 추이. 예측137

<그림 6-1> 포항제철 가열로에 설치한 열전발전시스템143

<그림 6-2> 피티써테크 제품군 ..145

<그림 6-3> 에이스텍 제품군(방열팬, 열전발전소자, 소형냉장고, 와인셀러 등) ...148

<그림 6-4> High Performance Type ..151

<그림 6-5> Multi Purpose Type ..152

<그림 6-6> Micro Generation Module ...153

<그림 6-7> Ferrotec 열전소자 제품군 ...155

<그림 6-8> Alphabet Energy사의 E1 ...156

<그림 6-9> EVIDENT THERMOELECTRICS사의 열전발전모듈(TEG-HH-15-1.0) ·159
表 목차

表 2-1 열전재료의 종류와 특성 .. 17
表 2-2 국내의 열전소자 연구현황 ... 37
表 2-3 미국의 열전소자 연구현황 ... 43
表 2-4 일본의 열전소자 연구현황 ... 53
表 2-5 유럽의 열전소자 연구현황 ... 57
表 2-6 열전소자 및 열전발전에 관한 국내 특허

(공고연월 기준 최근 5년간) .. 62
表 3-1 차량별 TEG 비교 .. 79
表 3-2 우주항공용 열전발전 시스템의 종류 ... 83
表 3-3 에너지 분야 열전발전기 종류 ... 85
表 5-1 전세계 에너지 하베스팅 시장전망 2012-2022년 132
表 5-2 용도별 열전 에너지 하베스트 시장전망 134
表 6-1 열전변환기술 - 국내외 산업동향 .. 140
제 1 장 서론

기후 변화의 주범으로 주목된 화석연료 사용을 줄이려는 노력이 전 세계적으로 전개되고 있으며, 신재생에너지로 전환 전력 생산을 국가의 핵심 에너지 개발과제로 선정하여 대대적인 투자를 하고 있다.

또한 몇 년 전까지만 해도 가장 경제성 있는 대체 에너지 원으로 평가를 받아온 원자력 발전이 후쿠시마 원전사고 등으로 안정성에 대한 문제가 발생하면서 유럽을 포함한 에너지 강대국을 중심으로 원자력 발전소 증설 중단을 넘어 기존 발전소까지 해체하려는 움직임이 일어나고 있다.

태양광을 주축으로 한 풍력, 조력 등의 신재생에너지 기술은 화석에너지 대비 낮은 경제성과 대형화를 위한 기술발전의 한계, 입지선정, 환경 파괴 등의 문제와 맞물려 빠르게 성장하지 못하고 있다.

최근 들어서는 대형발전을 통한 전력생산 이상으로, 우리 주변에서 무심코 지나치기 쉬운 에너지들에 대한 관심이 증가하고 있으며, 대체에너지 개발보다는 낭비되는 폐열을 회수하는 에너지 하베스팅 분야가 주목을 받고 있다.

에너지 하베스팅(Energy harvesting)은 자연에 존재하는 태양광, 열, 진동, 바람, 위치에너지, 전자기파로부터 전기적 에너지를 획득하는 기술로서 태양광으로부터 에너지를 얻는 솔라셀, 열로부터 전기에너지를 얻는 열전소자, 진동으로부터 전기에너지를 얻는 압전소자, 그리고 전
자기파로부터 에너지를 얻는 RF 방식이 있다.

이 중 열전소자(熱電素子: TEM(Therm-electric Materials))는 열에너지 를 전기에너지로, 전기에너지를 열에너지로 직접 변환하는데 사용되는 소자로 시간과 장소에 구애받지 않고 존재하는 열에너지를 무한 동력 으로 활용할 수 있다는 장점을 지니고 있다.

열전소자는 개발 초기에 첨단분야인 우주항공 분야에 활용되었으나 최근에는 자동차, 반도체, 컴퓨터, 가전제품, 발전 등 산업전반에 걸쳐 널리 응용되고 있으며 선진국을 중심으로 에너지 변환효율을 높이기 위한 방향으로 열전소재 및 기타 응용분야에 대한 연구가 진행되고 있 다.

본 고에서는 ‘에너지 절감’이라는 시대적 사명에 부응하는 열전소 자와 열전 발전소자에 관하여 기술 및 시장 측면에서 살펴보고 향후 개발동향에 대해 분석해 보고자 한다.
제 2 장 열전발전소자 기술동향 분석

제1절 열전 및 열전발전소자의 개요

1. 열전소자의 개념

열전현상은 서로 다른 두개의 소자 양단에 직류전압을 가하면 전류의 방향에 따라 한쪽 면에서는 흡열하고, 반대면에서는 발열을 일으키는 것을 의미한다. 이는 1834년 프랑수스 J.C.A. Peltier가 발견한 현상으로 펠토리(Peltier)효과도 한다.

열전소자는 전기를 통하면, 그 양단에 온도차를 발생하거나(Peltier 효과), 역으로 그 양단에 온도 차이를 부여하면 전기를 발생하는(Seebeck 효과) 소자를 말한다. 열전소자는 냉매를 사용하지 않는 열전 냉각(thermoelectric cooling)이나, 열을 직접 전기로 변환하는 열전발전(thermoelectric generation)에 사용되며 이러한 기술을 열전 에너지 변환기술이라 한다.
열전냉각 기술은 소형으로 전류제어가 가능한 특성을 이용하여 국소 정밀 온도제어와 냉매를 이용하지 않는 청정 냉각을 목적으로 사용된다. 그 용도는 매우 다양하여 냉정수기, 자동차용 냉온장고, 컴퓨터 CPU 칩의 냉각기, 광통신용 레이저 다이오드 모듈 레이터, 잉크젯 프린터 헤드의 황온제어, 이동통신 무인기지국, 통신용 전자부품 캐비닛, 과학계측기기, 의료기기 등에 다양하게 이용된다. 1)

열전발전은 1822년 독일 제벡(T.J.Seeback)에 의해 발견된 이론으로 P형과 N형의 결합된 소자 양단, 재료 양쪽에 온도 차이를 주면 기전력이 발생하는 현상을 이용한 것이다. 이 제벡효과를 이용한 것이 열전발전기(Thermoelectric Generator)이다. 일반적으로는 150℃ 이상 온도차의 버려지는 열을 이용하여 발전하는 것으로 유지비가 거의 발생하지 않으며, 반영구적으로 사용이 가능한 특징을 가진다.

1) 공업화학전망, 열전 에너지 변환기술, 2013
최근에는 150℃ 이하의 온도차에서도 발전이 가능해져서 열전소자를 이용한 열전발전의 개발가치가 한층 높아지고 있고, 높은 초기투자비용을 회수하는 기간이 짧아지고 있어 관련 기술에 대한 관심이 높아지고 있는 추세이다.

또한 기존의 방법으로 활용이 어려웠던 자동차 폐열, 체열 etc.에서도 에너지를 추출 할 수 있으며, 전력 생산을 위한 기계장치가 필요 없어 소형화가 필요한 휴대용 전원 등에 적용하는 추세이다.

2. 열전 및 열전발전소자의 특징

가. 열전소자의 기술적 특징

1821년 Seebeck은 이종 금속을 접합시킨 폐회로 내에 자침을 두고, 접합부에 온도차를 주면 자침이 회전하는 현상을 발견하여, 각종 금속의 접합에 대해 그 효과를 정리하였다. 이 현상은 온도차에 의해 열기전력(thermal emf)이 발생하여 폐회로 내에서 전류가 호르기 때문에 일어나는 것으로, 소위 Seebeck 효과로 알려져 있다. 서로 다른 두 재료a와 b에 온도차(ΔT)가 존재하면 열기전력(V_{ab})은 아래 식과 같다.

\[V_{ab} = \alpha_{ab} \Delta T \]

여기서 비례 상수 \(\alpha_{ab} \)를 상대 Seebeck 계수라 한다. 이때 저온 접합부에서 재료 a로부터 b로 전류가 호르도록 열기전력이 발생하는 경우, \(\alpha_{ab} \)는 양(+)의 값을 갖는다고 정의하고, 이러한 재료는 주 전하 운
반자(major charge carrier)가 정공인 p형의 성질을 나타낸다. 반대로 전류의 방향이 재료 b에서 a로 호를 경우 a_{ab}는 음(-)의 값을 갖고, 주 운반자가 전자인 n형의 성질을 나타낸다. 주어진 온도에서 모든 전기 전도체는 물질 고유의 Seebeck 계수, 즉 절대 Seebeck 계수를 갖고 상대 Seebeck 계수와 $a_{ab} = a_{a} - a_{b}$의 관계가 있다. 여기서 a_{a}와 a_{b}는 각각 재료 a와 b의 절대 Seebeck계수이다.

1834년 Peltier는 이중 금속을 연결한 회로에 직류를 흘리면, 전류의 방향에 따라 접합부에서 흡열 또는 발열이 일어나는 것을 발견하였고 이를 Peltier 효과라 부른다. 두 재료의 접합부에 직류(I)를 흘릴 때 Peltier 효과에 의해 발생하는 흡발열량(Q_p)은 아래식과 같다.

$$Q_p = \pi_{ab} I$$

여기서 비례 상수 π_{ab}는 Peltier 계수로서 Seebeck계수와 $\pi_{ab} = \alpha_{ab} T$의 관계가 있으며, 이를 제1 Kelvin 관계식이라 한다. α_{ab}가 양의 값을 가질 때 전류가 재료 b에서 a로 호르면 접합부에서 흡열이, a에서 b로 호르면 발열이 일어난다.

1851년 Thomson은 온도 기울기가 있는 조성이 균일한 도체에 전류가 호르면, 도체 내에서 열이 흡수 또는 방출되는 것을 열역학 제2법칙으로부터 예측하였고, 이후 이 현상이 실험적으로 증명되어 Thomson 효과라 부른다. 만약 조성이 균질한 물질에 온도 기울기(dT/dL)가 존재하고 동시에 직류(I)가 호르면, 물질 내부에서 발생하는 흡발열량(QT)은 아래식과 같다.
여기서 \(\tau \)는 Thomson 계수로서 Seebeck 계수와 \(\tau = T(d\alpha/dT) \)의 관계가 있으며, 이를 제2 Kelvin 관계식이라 한다. 따라서 열전 에너지 변환효율이 우수한 열전소재를 위해서는 Seebeck 계수, Peltier 계수 및 Thomson 계수가 큰 소재를 개발하는 것이 중요하다. 열전계수들, 즉 Peltier 계수와 Thomson 계수는 각각 제1 및 제2 Kelvin 관계식으로부터 Seebeck 계수와 관련이 있으므로 열전재료의 특성 중 Seebeck 계수를 측정하여 평가하는 것이 용이하고 중요한 방법이다. 2)

나. 열전발전 소자의 기술적 특징

열전변환 모듈(module)은 P(+)형과 N(−)형의 열전변환 재료가 서로 교차하여 배열 구성되어 있다. 또한 열전변환 재료는 전극에 접합되어 있고, 이 전극은 알루미나세라믹(alumina - ceramics) 판 등과 같은 절연재료로서 절연 구성되어 있다.

열이 열전변환 재료 가운데를 흐르게 되면 이의 양단에 온도구배(temperature gradient)가 발생한다. 이때, P형 열전변환 재료 중에서는 정공(electron hole)이 저온 측으로 이동하여 +로, 고온 측은 −로 대전(electrification)된다. 반면 N형 열전변환 재료에서는 전자가 저온 측으로 이동하여 저온 측이 −로, 고온 측은 +로 대전된다.

이와 같은 제벡효과(Seebeck effect)에 의하여 저온 측과 고온 측에는

\[
Q_T = \tau I \left(\frac{dT}{dL} \right)
\]
전위차가 발생하며, 회로를 연결하여 부하저항을 접속시키면 전류가 흘러서 직류 전기를 얻을 수 있다. 제벡효과의 원리에 따르면 열전변환 재료 양단의 온도 차이가 크면 클수록 발전량은 많다. 3)

단위 반도체 쌍으로부터 발생한 전력은 그 양이 매우 적기 때문에 다수의 반도체 쌍들을 전극에 의해 서로 직렬로 연결함으로써 발생 전력을 증가시키게 된다. 이 같은 발전의 원리는 그 규모를 대형화한 경우에도 기본은 동일하다. 다만 대규모 전력을 효율적으로 생산하기 위해서는 활용 대상열의 효율적 채열방법과 열원의 특성에 대응한 모듈 설계가 중요하다. 4)

<그림 2-2> 열전발전소자의 작동원리

3) KISTI, 미이용 열을 활용하는 열전발전기술, 2015
4) 전기저널, 열전발전기술 개발현황, 2012
모듈의 pn 접합을 가열하고 각 단자 전극을 저온으로 유지하여 온도 차를 발생시키면, Seebeck효과에 의해 p형 전극에 (+), n형 전극에 (-) 전압이 발생한다. 이 전극에 외부 부하(RL)를 연결하면 전류가 흐르므로 전력이 발생된다. 소자의 내부 저항과 부하 저항이 같을 경우 최대의 출력을 발휘하고, 그때 발생하는 최대 전압과 전류는 각각 \(V = \frac{1}{2} \alpha_{pn} \Delta T \)와 \(I = \frac{1}{2} \alpha_{pn} \Delta T/RL \)이므로 최대 출력(\(P_{\text{max}} \))은 아래식이 된다.

\[
P_{\text{max}} = \frac{1}{4} \frac{\left(\alpha_{pn} \Delta T \right)^2}{R_L}
\]

열전 발전모듈을 전원으로 이용하기 위해서는 열전 냉각모듈과 같이 다수의 pn 쌍을 직렬로 연결하지만, 큰 전류가 필요한 경우에는 병렬로 연결하여 사용한다. 열전 발전모듈은 고온 접합부의 온도, 즉 동작 온도가 높을수록 효율이 높아지므로 각 온도 영역에서 성능지수가 큰 이종 열전재료를 접합하는 그림(좌)의 분할형(segmented type) 또는 이중 재료의 소자를 적층하는 그림(우)의 적층형(cascaded type)을 사용하기도 한다. 5)

5) 공업화학전망, 열전 에너지 변환기술, 2013
3. 열전발전소자의 응용분야

열전은 단일 재료 내에서 일어나는 에너지 변환을 기반으로 하고 있어 시스템 구조가 단순하며 신뢰성이 높고 에너지 변환 과정에서 부산물을 발생시키지 않아 친환경 기술로서 큰 가치가 가진다. 또한, n형과 p형의 반도체 재료로 이루어진 단위 모듈로 만들 수 있어 회수 대상이 되는 폐열에 적합한 크기로 조절하기 쉽다. 이에 따라 열전은 폐열 회수뿐만 아니라 자연열을 이용한 발전, 인체열을 이용한 에너지 확보에 적용할 수 있는 에너지 변환기술로서 잠재성을 가지고 있다.

그러나 현재까지 상용화된 열전 변환 시스템은 기존의 에너지 변환 시스템에 크게 밀도는 변환 효율로 인해 범용화가 불가능하며 군사 분야, 우주 항공 산업 등의 특수 환경에서만 제한적으로 활용됐다. 따라서 열전 변환 효율을 높이기 위한 기초 소재 연구가 활발하게 진행되고 있다.

열전소자의 변환효율은 Seebeck 상수(S), 전기전도도(σ), 절대온도(T),
그리고 열전도도(κ)로 이루어진 열전 성능 지수-thermoelectric figure of merit(ZT = S²σT/κ)를 이용해 소재의 크기와 무관하게 평가될 수 있다. 현재 상용화된 열전소자의 열전 성능 지수는 1.0 수준이지만, 열전 성능 지수가 증가함에 따라 그 활용도가 큰 폭으로 증가한다. 열전 성능 지수를 1.5 이상으로 향상시키면 발전소와 자동차를 포함한 산업 전반의 폐열을 회수할 수 있다.

세계적 1차 에너지 소비를 기준으로 보면 현재 약 60%의 에너지가 폐열의 형태로 배출되고 있으며, 이 가운데 약 45%의 에너지만이 기존의 폐열 회수 시스템을 통해 회수되고 있다. 기존의 폐열 회수 시스템은 고온 영역의 폐열을 중심으로 적용되고 있는데, 규모와 복잡성으로 인해 자동차와 같은 소규모의 폐열원에 적용하기 어렵고, 폐열원에서 발생하는 열에너지를 발전시스템 또는 열소비원으로 이동시켜야 하기 때문에 분산된 중저온 폐열에 모두 적용하기에는 경제성이 떨어진다.
이에 비해 열전소자를 이용한 폐열 회수 시스템은 구조가 간단하고 열원에 직접 부착해 부가적인 발전 시스템 없이 바로 전기를 생산할 수 있기 때문에 산재된 중저온 폐열을 회수할 수 있다. 또한 열전소자는 고온 공정이 없는 소규모의 산업체에서도 적용이 가능해 현재 회수되지 못하고 방출되고 있는 55%의 열에너지들 회수할 수 있다. 특히 고온 및 중저온 폐열이 다량 발생하는 자동차의 경우 폐열 회수는 연비와 직결되는 중요한 기술이다.

<그림 2-5> BMW의 배기 배열을 이용한 열전발전 사례

만일 열전 성능 지수가 2.0 이상으로 확보되면 폐열회수를 넘어 자연 에 존재하는 열에너지를 이용해 전기를 생산할 수 있다. 대표적인 자 연에너지에 해당되는 태양에너지의 부존량은 시간당 10만TWh에 달하 며, 면적으로 환산할 경우 1m2당 0.2kW에 해당한다. 현재 사용위한 태 양광 발전소자에 열전을 기반으로 하는 태양열 발전소자와 복합시킨 태양에너지 복합 발전소자에 대한 연구가 진행 중이다. 이것이 사용화 될 경우 막대한 양의 청정에너지 확보할 수 있다.

또 다른 자연 열에너지에는 지열과 해수열이 있다. 지열에너지의 부 존량은 1년간 1만TWh이며, 7개의 해안도시를 기준으로 할 때 확보할
수 있는 해수열 에너지 부존량은 1년간 32TWh이다. 열전 기반의 발전 소자는 크기의 가변성과 더불어 내구성이 높고 유지 보수가 거의 필요 하지 않아 이런 자연에너지 발전에 적용할 수 있는 가능성이 높다.

열전 성능 지수가 3.0에 도달하면 미소 열에너지의 회수할 수 있다. 대표적인 미소 열에너지원은 인체열로 그 양은 2.4 ~ 4.8W에 해당한다. 20%의 에너지 변환 효율을 확보하더라도 1W에 달하는 전기에너지를 얻을 수 있다. 개인이 몸에 지니는 전자기기가 증가함에 따라 이런 모바일 기기에 에너지를 공급하는 것이 큰 과제가 됐다. 특히 배터리와 구동 효율은 갈수록 향상되는 기기의 성능을 뒷받침하기에는 부족한데, 아마도 충전이 필요 없는 반영구적인 구동 방식은 모바일 기기의 마지막 성장단계가 될 것이다. 열전소자를 이용해 인체열 발전이 가능해지면 모바일 기기의 에너지원을 확보할 수 있다.

실제로 일본 Seiko사에서는 열전소자로 배터리나 태양 없이 구동하는 손목시계를 개발해 판매하였다. 스마트워치와 스마트폰의 경우 인체열 회수량으로 각각 40mW/cm2와 20mW/cm2의 에너지를 확보할 경우 보조전원으로서 활용할 수 있을 것으로 기대해, 일부 대기업에서 열전소자를 융용해 상용화하려고 박차를 가하고 있다. 6)

6) 녹색기술센터, 에너지 하베스팅, 나노 기술을 만나다, 2015
<그림 2-6> Seiko社 손목시계에 적용된 열전발전모듈
제2절 열전발전소자의 기술 개발동향과 전망

1. 열전재료 기술의 개발

열전현상은 19세기 초 Seebeck, Peltier, Thomson에 의해 발견된 이래, 냉각과 발전 분야에 응용하려는 연구가 지속적으로 진행되어 왔다. Altenkirch는 열전재료의 성능을 평가하기 위해 Seebeck 계수, 전기전도도 및 열전도도를 연관시킨, 소위 열전 성능지수(thermo electric figure of merit)의 개념을 도입하여 금속계 재료의 열전특성을 조사하였다. 그러나 금속계 열전재료의 성능지수가 매우 작아 열전 소자의 작동 효율이 1% 정도에 불과하였다. 7)

1929년 Iofe A.F.에 의해 재료계통이 체계화됨으로 조직적인 연구가 이루어지고 있으며 이후 연구를 통해 III-V, IV-VI, V-VI 쪽의 화합물 반도체 재료가 연구되었다. 그 결과 100 μV/K 이상의 Seebeck계수를 갖는 물질이 개발되어 5% 이상의 효율을 갖는 열전 소자를 만들 수 있었다.

1970년대의 우주시대에는 혹성 탐사위성의 통신용 전원소자에 Pb-Te 계, Si-Ge계의 실용화가 성공하여 오늘날에도 화성이나 목성 탐사용으로

7) 공업화학전망, 열전 에너지 변환기술, 2013
로 사용되고 있다. 1990년 중반에는 Slack G.A.에 의해 PGEC라고 하는 열전재료의 개념이 제창되었고 촉전형의 코발트-니켈렇(skutterudite)을 발견할 수 있는 계기가 되었다. 또한 최근에는 Dresselhaus M.S. 등에 의해 저차원화에 의한 전하의 편제 등 양자적 효과를 사용하여 열전발전을 더욱 고성능화 하는 이론적 가능성이 발견되어 열전발전이 새로운 관심을 받고 있다.

또한 Terasaki I., Funahashi R., Koumoto K. 등에 의해 열전증상 산화물이 발견되는 등 여러 분야에서 열전재료의 고성능화가 전개되고 있다. n형과 p형 열전재료의 무차원 성능지수 ZT의 온도의존성 조사에서 기존의 Bi-Te계, Pb-Te계, Si-Ge계에 더하여 silicide계, skutterudite계, Clathrate계, half-Heusler계, La-Te계, 산화물계 등이 추가되었으며 ZT>1를 만족하는 고성능 재료계가 많이 발굴되고 있으며 이에 대한 연구가 활발히 진행되고 있다. 8)

아래 표는 다양한 열전소재의 개발현황과 특성에 대하여 정리한 것이다. 9)

8) KISTI, 열전발전기술의 개발동향, 2013
9) http://www.heatrecar.com/content-page.php?id_page=6
대표적인 열전제료로서는 Bi2TeO3, PbTe, Si-Ge합금을 들 수 있다. Bi2TeO3는 실온부근, PbTe는 300℃ 부근의 중온영역, Si-Ge합금은 80 0℃ 이상의 고운영역에 있어서 각각 높은 값을 나타낸다. 열전소자에는 동일한 물질 군에서 p형과 n형을 나타내는 재료를 준비할 필요가 있다. 이 때문에 Bi2TeO3, PbTe, Si-Ge합금 각각에 있어서 다양한 기법에 의해 열전달형태가 제어되고 있다.

<table>
<thead>
<tr>
<th>Material</th>
<th>Temp range</th>
<th>Development level of material</th>
<th>Development level of TE</th>
<th>Bottle neck</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Bi,Sn)2Te3</td>
<td>T hot up to 350K, ZT max = 1.0</td>
<td>Production level, superlattices, soft superlattices (IFM) and Nanocomposites (IFM) under laboratory development</td>
<td>Low efficiency modules commercially available</td>
<td>Only low temp. material, poor efficiency of commercial material, superlattice and QD-material only in the lab</td>
</tr>
<tr>
<td>PbTe</td>
<td>T hot up to 800K, ZT max = 0.8, recent data of IFM disclosed due to commercial project</td>
<td>Material available in restricted amounts</td>
<td>Used since 40 y in space applications, next Mars mission PbTe-based RIBOs</td>
<td>ZT-value of commercial material still poor</td>
</tr>
<tr>
<td>SiGe</td>
<td>T hot up to 1000K, ZT max = 0.8 for bulk material, superlattices to 3</td>
<td>Bulk material, superlattices and QD-Material under laboratory development</td>
<td>No modules of bulk material available, superlattice module to expensive and not available</td>
<td>Modules and materials not sufficient for commercial use, superlattice and QD-material only in the lab</td>
</tr>
<tr>
<td>Oxides</td>
<td>T hot up to 1000K, ZT max < 0.1</td>
<td>Available and cheap material, efficiency very poor</td>
<td>No modules available</td>
<td>ZT-value of commercial material very poor</td>
</tr>
<tr>
<td>Silicides</td>
<td>T hot up to 900K, ZT max = 0.4</td>
<td>Good material only on laboratory scale</td>
<td>No modules available</td>
<td>ZT-value of commercial material poor</td>
</tr>
<tr>
<td>Chlorides</td>
<td>T hot up to 900K, ZT max = 0.9</td>
<td>Good material only on laboratory scale</td>
<td>No modules available</td>
<td>Material and modules are not available for system integration</td>
</tr>
<tr>
<td>Selenides</td>
<td>T hot up to 1000K, ZT max = 1.5</td>
<td>Good material only on laboratory scale</td>
<td>No modules available</td>
<td>Material and modules are not available for system integration</td>
</tr>
<tr>
<td>Zno-Cadmium-Antimonide</td>
<td>T hot up to 700K, ZT max = 1.4</td>
<td>Development level: laboratory</td>
<td>No integration in TE devices yet</td>
<td>Modules are not available for system integration</td>
</tr>
<tr>
<td>LAST-18 alloy</td>
<td>T hot up to 800K, ZT max = 2</td>
<td>Development level: laboratory</td>
<td>No integration in TE devices yet</td>
<td>Thermal stability</td>
</tr>
</tbody>
</table>
대표적인 예를 들면, Bi2TeO3계 재료에 있어서는 Bi2TeO3의 Te위치를 일부 Se로써 치환한 것을 n형으로서 사용한다. PbTe계 재료에 있어서는 p형의 첨가물로서는 주로 나트륨(Na)이, n형 첨가물로서는 주로 PbI2가 각각 사용되고 있다. Si-Ge합금에 관해서는 보론(B)을 첨가함으로써 p형에, 인(P)을 첨가함으로써 n형으로 각각 제어할 수 있다. 이들 대표적인 열전재료 가운데에서도 최근 PbTe에 대한 주목이 높아지고 있다.

PbTe의 결정구조는 NaCl형 구조이며, 이온결합성이 강하다. PbTe계 재료에 있어서는 Pb위치를 동쪽의 Sn으로써 치환함으로서 밴드 갭의 크기를 변화시키거나 Pb와 Sn의 합금화반란효과에 의해 격자열전도율을 감소시키기도 하고, 열전특성을 최적화하는 연구가 오래전부터 실시되고 있다. 최근에는 PbTe를 기반으로 한 몇몇의 선진 열전재료가 개발되고 있다.

대표적인 예로서 나노크기의 석출상이 자연스럽게 형성하는
AgPbmSbTem+2 (LAST; Lead Antimony Silver Tellurium)와 페르미 (Ferimi) 준위 부근의 상태 밀도가 제어된 Ti첨가한 PbTe가 있다. 최근에는 나노구조화된 열전재료의 구조를 중간크기 (meso scale)로써 정밀하게 제어한 계층구조를 갖는 PbTe나 원소도핑이나 원소치환에 의하여 가전자대를 수속시켜서 퇴화하는 PbTe에 있어서 매우 높은 열전성능이 보고되고 있다.

Bi2TeO3, PbTe, Si-Ge합금 이외에도 높은 열전특성을 나타내는 물질군이 몇몇 존재한다. 산화물 열전재료로서는 p형으로서, NaCoO4나 Ca3Co4O0가, n형 재료로서 흰토류 혹은 니오븀(Nb)을 도핑한 SrTiO3, Al을 첨가한 ZnO, CaMnO3를 들 수 있다. 이외에도 Skutterudite[Pr(Os1-xRux)4Sb12·ROs4Sb12(R=La, Nd)]화합물, Clathrate화합물, Zn4Sb3, Heusler합금, 황화물, Silicide, 광물계 재료, 유기물, 좁은 밴드 갭의 금속화합물, 황화티타늄 등을 들 수 있다. 최근에는 이들의 신규재료의 개발연구뿐만 아니라 개발된 재료를 탑재한 열전소자도 개발되고 있다. 10)

10) KISTI, 열전재료 연구의 최신동향, 2014
열전소자의 성능 및 활용 가치는 소재의 열전 성능 지수에 의해 결정되므로, 열전 발전 시스템의 연구는 소재를 기반으로 진행되고 있다. 벌크소재 기반의 열전 연구는 1950년대 이후에 크게 발전했다. 주로 반도체 소재를 중심으로 전자농도를 최적화해 열전 성능 지수를 높였으며, 비스무트Bi-텔루륨Te계의 반도체를 통한 상업화가 가능하게 됐다. 이후 BiTe에 안티몬Sb, 셀레늄Se 등을 추가해 열전 성능 지수를 최적화했으며, 1990년대에 열전 성능 지수가 1.0에 해당하는 벌크소재를 확보할 수 있었다. 그러나 자연계에 존재하는 소재의 경우, 열전 성능 지수를 이루는 제배크Seebeck 상수, 전기전도도, 열전도도가 상호 연관되어 있어 독립적인 조절이 불가능하기 때문에 열전소자의 발전은 한계가 있었다. 그럼에도 낮은 열전도도를 갖는 코발트Co-안티몬Sb계 열전소재
를 이용해 1.5에 가까운 열전 성능 지수를 확보했다.

이후 벌크 열전소재에 나노기술이 도입되면서 열전 연구에서 두 가지의 큰 방향이 제시됐다. 첫 번째는 나노 크기의 구조에 의한 열전도 도의 감소이며, 두 번째는 양자 구속 효과에 의한 제베크 상수와 전기 전도도의 최적화이다. 나노 크기의 구조와 계면을 이용한 열전달 감소 는 열전도도를 성공적으로 낮추는 결과를 보였으나 동시에 전기전도도 의 손실이 발생하는 한계를 가지고 있으며, 제베크 상수 증가는 대부분 고온에서 효과를 나타낸다.

2000년대 이후 나노 기술 및 신소재의 특성을 이용해 고온 영역에서 높은 열전 성능 지수가 구현됐다. 2004년에는 나노점이 포함된 은Ag-안티몬Sb계 벌크소재를 이용해 800K(여기서 K는 절대온도의 단위인데, 절대온도K = 섭씨온도°C + 273.15를 의미한다)에서 열전 성능 지수 2.0 을 구현했으며, 2009년에는 인듐In-셀레늄Se계 벌크소재의 이방성을 바탕으로 700K에서 1.5의 열전 성능 지수를 얻었다. 2011년에는 납Pb-텔루륨Te계 벌크소재를 통해 800K에서 열전 성능 지수 1.8을 확보했다. 벌크 열전소재에서 가장 높은 열전 성능 지수를 구현한 것은 2014년에 보고된 결과다. 즉 주석Sn-셀레늄Se계 소재의 낮은 열전도도와 재료의 이방성을 활용해 900K에서 2.6의 열전 성능 지수를 달성했다.

벌크소재와 별도로 2차원 박막형 열전소재에서는 좀 더 적극적인 방법으로 열전도도를 낮춰 열전 성능 지수를 높이려는 방법에 대한 연구가 많이 진행됐다. 미세한 기공을 이용한 나노메시nano-mesh 구조가 대표적인 예로, 열전도도를 1/10 ~ 1/100의 수준으로 낮출 수 있었다.
그러나 전기전도도 손실도 함께 나타나 상온(300K)에서 0.4 정도의 열전 성능 지수가 얻어졌다. 최근의 2차원 열전소재 연구는 주로 2차원 소재의 유연성을 기반으로 해 의류 및 인체에 적용할 수 있는 열전소재의 개발이 주를 이룬다. 전도성을 가진 폴리머 기반의 연구는 현재 0.1 수준의 낮은 열전 성능 지수를 보이니, 인체의 미소 열에너지를 확동하기 위한 소재 연구로서 의미가 크다.

3. 열전 나노선

1차원 열전소재인 나노선과 관련된 열전 분야는 1993년 미국 MIT의 드레셀하우스(Mildred Dresselhaus) 교수의 이론적 연구를 기반으로 한다. 차원의 감소는 양자 구속 효과를 통해 제배크 상수를 향상시킬 수 있으며 동시에 열전도도 감소를 유발한다. 특히 비스무트Bi 기반의 나노선은 50nm의 직경에서 반도체로 전이되 열전 성능 지수가 비약적으로 증가한다는 사실이 예측됐다. 이는 일반적인 재료에서 기대되는 전이 직경보다 훨씬 큰 수준으로, 실험적으로 구현하기 위해 많은 연구가 진행됐다. 그러나 나노선의 크기 및 계면 효과에 의한 열전도도 감소가 성공적으로 보고된 것에 비해, 양자 구속 효과에 의한 제배크 상수의 증가 및 이로 인한 열전 성능 지수의 향상은 제한적으로 보고되고 있었다.

2007년 미국 버클리 캘리포니아대의 마줌다르(Majumdar) 교수팀에서 표면이 거친 실리콘Si 나노선의 열전 성능 지수를 측정해 보고한 것은 저차원 열전 분야에서 큰 의미가 있었다. 이 연구는 현재의 전자산업을 이끌어온 소재인 Si를 기반으로 삼아 나노선 구조를 적용함으로써, 열
전소재로 간주되지 않던 Si에 열전소재의 가치를 부여했다. 즉 Si의 거친 표면에 의해 열전달이 감소해 열전도도를 낮추었고 이에 따라 열전성능 지수를 높였다. 구체적으로 100nm 이하의 나노선 직경과 거친 표면은 Si의 열전도도를 1/15 수준으로 낮추어 0.5 이상의 열전성능 지수를 달성했다.

2011년 연세대 나노소자연구실은 열전나노선에 코어-쉘 구조를 적용해 열전도도를 획기적으로 낮추었다. 별크 비스무트Bi의 열전도도는 10W/mK 이상으로 나노선 구조를 이용해 1/5 수준까지 낮출 수 있음을 보고했다. 이에 텔루륨Te 셀 구조를 추가로 적용한 Bi:Te 코어-쉘 나노선은 거친 계면을 통해 1/10 수준인 1W/mK의 낮은 열전도도를 얻었다.

또한 최근의 추가적인 연구 결과, 열전나노선에 코어-쉘 구조를 적용해 제베크상수를 증가시킬 수 있음을 확인했다. Bi 나노선 코어를 감싸고 있는 Te 셀은 Bi 내부에 응력을 통해 결정구조의 이방성을 조절하기 때문에, 나노선 연구의 근간이 된 반도체 전이를 일으켜 열전성능 지수가 0.8 이상으로 향상될 수 있었다. 이는 동일한 구조의 나노선에서 열전도도의 감소와 제베크상수의 증가가 동시에 확인된 것인데, 열전성능 지수를 이루는 각각의 인자(제베크상수, 전기전도도, 열전도도)를 독립적으로 조절할 수 있는 새로운 방법을 구현했다는 데 의미가 있다.
그러나 열전나노선의 열전 성능 지수를 향상시킬 수 있다는 잠재성과 별도로 열전나노선을 이용해 열전소자를 개발하려면, 공정상 열전 모듈을 구현해야 한다는 어려움이 있다. 따라서 높은 열전 성능 지수를 확보하기 위해서는 소재 연구와 더불어 나노선으로 이루어진 열전 모듈을 제작하고 발전 시스템을 구현하는 공정기술에 관한 연구가 필요하다. 최근 정부 주도하에서 나노선 변신을 위한 공정기술을 기반으로 하는 열전 모듈 제조와 관련한 연구가 진행 중이다. 11)

11) 녹색기술센터, 에너지 하베스팅, 나노 기술을 만나다, 2015
4. 유기열전재료

대부분 무기재료는 S(제기계수)와 σ(전기전도도) 값이 비교적 크기 때문에 $k'(열전도율)$을 낮추기 위한 연구가 주로 이루어지고 있다. 한편 유기재료는 무기재료에 비해 k' 값이 작아서 열전 재료로 옵용하는 데 장점을 갖고 있으나, S나 σ 값이 무기재료에 비해 작기 때문에 유기 열전재료의 발전은 전도성 고분자의 발전에 달려있고 별 수 있다. 1964년에 J. E. Katon 등이 유기재료의 열전특성을 측정하여 $ZT=0.8 \times 10^{-5}$의 값을 얻어 실용화가 불가능하다고 생각되었으나, 2007년 Y. Hiroshige 등이 $ZT=0.1$인 값을 보고한 것을 계기로 유기재료를 열전재료로 이용할 수 있을 것으로 기대되었다. 12)

전기전도성 공액 폴리머(conjugated polymer)는 광전자 장치는 물론 박막전자장치에까지 그 응용범위가 확대되고 있다. 그 중 대표적인 예로 휴대전화와 대면적 영상기기에 사용되는 유기발광다이오드(OLED)를 들 수 있다. 근래에 공액 폴리머를 열을 전기로 변환시키는 열전재료로서도 주목을 받게 되어 전기적 도핑(doping)의 정밀한 제어에 대한 연구가 진행되고 있다. 특히 Poly(3,4-ethylene dioxythiophene)(PEDOT)와 같은 공액 폴리머는 상온 근처에서 온도차를 전위차로 바꾸는 열전 변환효율이 Bi_2Te_3와 같은 무기재료에 근접할 정도이다.

2011년에 Bubnova 등은 PEDOT:tos계로부터 $ZT=0.25$라는 무기 재료에 필적하는 특성을 얻어 PEDOT계 재료가 열전재료로 유망함을 보고 하였으며, 최근에는 Crispin 등(Nature Materials, 13, 190~194, 2014)은

12) KISIT, 열전변환 성능이 높은 전도성 고분자막, 2015
PEDOT를 도핑하여 반금속(semi-metal)과 같은 전자구조와 전기운반 특성상을 나타내는 우수한 PEDOT:Tos 박막 열전재료를 개발하였다. PEDOT:Tos 열전재료는 성능 면에서 아직은 무기재료 열전재료에 미치지 못한다. 그러나 비교적 높은 열전력과 안정성이라는 면에서 현재로서는 유기 열전재료의 챔피언이라 할 수 있다. 염가이고, 용액처리가 가능하며, 박막으로 쉽게 석출시킬 수 있는 유기 열전재료는 실용적인 이점을 가지고 있다. 13)

또한 미이용 폐열의 대부분은 200°C 이하인데, 200°C 이하의 폐열을 회수하는 적절한 방법이 없는 게 현실이다. 비록 유기계 재료는 내열성이 낮아 고온에서 사용하기 어려우나, 유기열전재료의 특성이 향상되면 우리 주변의 저온 폐열을 전기로 회수하는 데 유기열전재료가 유용하게 사용될 수 있을 것이다. 14)

13) KISTI, 높은 전기전도도, 열전력의 플리머 열전재료, 2014
14) KISIT, 열전변환 성능이 높은 전도성 고분자막, 2015
제3절 국내 기술개발 동향 15)

열전발전을 위한 국내 기반 기술은 선진국에 비해 낮은 수준이며, 대학 및 출연연을 중심으로 열전 소재 중심으로 기술개발 중이다. 미래창조과학부에서는 ‘15% 이상의 열전 변환효율을 가지는 열전모듈’을 미래기술로 도출, 기술적 실현 시기는 2020년, 사회적 보급연도는 2025년으로 설정하였다. 16)

기계연구원 한승우 박사팀은 2012년 4월 열에너지지를 전기에너지로 바꾸는 세계 최고 수준의 박막 열전기술과 초소형 열전 발전소자를 개발하였다. 17) 또한 2014년에는 태양전지에서 사용하지 않고 버려지던 40%의 태양에너지지를 이용해 추가로 전기를 생산할 수 있는 태양에너지융합발전시스템을 개발하였다. 광필터를 통해 가시광선은 솔라셀로, 나머지 파장은 프레넬렌즈로 모아서 열전발전기로 발전하는 원리다. 이를 통해 태양에너지의 200~3000nm에 이르는 전체 파장 영역을 고루 활용함으로써 태양에너지 발전량을 높일 수 있다고 한다. 18)

전기연구원 박수동 박사팀은 2012년 6월 제백효과를 이용해 열을 곤장 전기로 바꾸는 열전 발전효율을 높이는 소재와 소자, 시스템 등을 복합적으로 개발하는데 성공하였다. 19) 우선 차세대 열전발전 물질인 마그네슘 실리콘 물질과 아연계 화합물질의 개발 및 소자화(전기를 만드는 최소단위 복합체 구성)에 성공했다. 이를 통해 기술의 상용화·산

15) 한국전자통신연구원, 열전소자 시장 및 개발동향, 2014
16) KISTEP, 제4회 과학기술예측 조사 2012-2035, 2012.2
17) 노컷뉴스, “기계연 초소형 열전 발전소자 개발”, 2012. 4. 4.
18) HelloDD, "태양전지 비터리지만 40% 태양에너지는 절약했다" 2012.02.13
19) 동아일보, “전기연 폐열 이용한 천환경 열전발전 기술 개발,” 2012. 6. 27.
업화를 위해 넘어야 할 수준인 10% 이상의 에너지변환효율을 넘어 최대 12.1%의 변환효율을 나타내는 광대역열전발전용 모듈들을 개발했다. 이는 일본에서 공식 기록한 12%대의 변환효율에 이어 동일 온도대에서 세계에서 2번째로 높은 수준이다.

또한 자체 개발한 반도체 열전소재를 통해 저온과 중온의 범위에서 열전변환 효율이 높은 재료를 적층형 복합 모듈(저온 및 중온용 소자 이중 배치) 개념으로 시스템을 구현함으로써 세계적 기술개발 능력을 보유했음을 입증했다. 이 기술을 활용하면 온도차 400℃일 때, 단위면적당 출력 1.5kW/m²로 열전발전 분야에서 가장 경쟁력이 있는 온도대인 400℃에서 개발 당시 세계최고 수준이다.

ETRI 부품소재연구부문 장문규 박사팀은 1차원 실리콘 나노선에서의 열전특성을 연구하였다. Top down방식을 이용해 제조된 50nm 직경의 n-type Si 나노선이 약 118μW/K의 제백계수를 가진다.
현재 사용 중인 열전재료는 재료의 우수성으로 인하여 Bi2Te3가 주류이나, Bi20 및 Te의 매장량은 100ppb21 미만으로 새로운 열전재료의 개발 필요성이 대두되고 있으며, Bi 및 Te의 산화물은 발암물질로 분류되고 있어 전 세계적으로 열전소자용 Bi2Te3 대체할 물질 개발에 연구를 집중하고 있다. 이 기술의 경우 실리콘 기반의 열전소자로서 주원료로 쓰이는 Si 열전재료 자원이 풍부하고 인체에 무해하다는 장점을 가지고 있다.

20 비스무트는 화학 원소로 기호는 Bi이다. 원자 번호는 83이며, 원자량은 208.980이다. 녹는점은 271.3\degree C이고 끓는점은 1560(±5)\degree C이다. 밀도는 실온에서 9.747g/cm3이다. 한자로 창연(蒼鉛)이라고 부르기도 한다.

21 ppb는 part per billion으로 10억분의 1을 나타낸다. 1 ppb는 1 mg/ton 또는 1ug/kg으로 나타낼 수 있다.
위 그림(좌)은 반도체 공정을 이용하여 실리콘 나노선 열전소자를 만드는 공정에 대한 개략도이다. (a) 두께 40 nm를 가지는 SOI(silicon on insulator)를 이용하여 (b) 반도체 노광 공정과 photoresistor ashing 공정을 적용하면, (c) 웨이퍼 상에서 선폭 50 nm 이하의 실리콘 나노선을 매우 간단한 공정으로 대량으로 손쉽게 제작할 수 있다. (d) 이후 이온주입 공정을 통하여 n- 및 p-leg을 웨이퍼 상에 제작할 수 있다. CMOS (Complementary Metal - Oxide - Semiconductor) 공정을 이용한 실리콘 나노선 열전소자 제작 방법은 반도체 제작 공정을 그대로 활용하므로, 저비용으로 대량생산이 가능한 공정이며, 향후 응용에 있어서 매우 유리한 장점을 가지고 있다. 22)

그림(우)은 CMOS공정을 이용하여 제작한 실리콘 열전소자이다. 실리콘 나노선은 50 nm의 선폭을 가지며, n-형 및 p-형 실리콘 나노선은 각각 5.0×1020 cm-3 및 2.3×1021 cm-3 으로 도핑되어 있다.

22) 진공이야기, 실리콘 열전소자 기술, 2014. 12
위 그림은 CMOS 공정을 이용하여 제작된 단위 실리콘 열전소자의 온도별 Seebeck 계수 및 파워팩터를 나타낸다. 상온 부근에서 1 K의 온도차이에서 약 160 μV/K의 Seebeck 계수 특성을 보인다. 또한 파워 팩터는 상온에서 약 9.3 mW/m · K의 특성을 가진다. 이는 Bi2Te3와 비교하여서도 손색이 없는 열전특성이다.

실리콘에서는 열전특성이 거의 미미한 것으로 여겨져 왔으나, 나노 구조를 활용하면, 현재 상용화된 Bi2Te3에 비교할 수 있는 열전특성을 보임에 따라서 실리콘을 이용한 열전소자 연구 분야에 급속한 발전이 예측된다. 특히, 반도체 설비 및 공정 기술이 세계적인 수준인 우리나라의 경우에는 실리콘 열전소자 연구에 대해 매우 우수한 여건을 가지고 있다고 할 수 있다. 실리콘을 기반으로 한 저비용, 고효율의 열전소자를 성공적으로 개발하게 된다면, 기존에 포함된 열전소자 분야에서 기술의 원천성 확인 및 초기 시장 점유에 매우 유리한 입지를 점할 수 있으리라 예상된다.
재료연구소 김경태 박사팀은 2011년 10월 탄소나노튜브(CNT)를 활용해 기존 열전소재보다 열전 변환 성능이 뛰어난 고효율 열전 분말을 제조할 수 있는 합성 공정을 최초로 개발했다.

비스무스 테루라이드계(Bi₂Te₃)를 탄소나노튜브와 결합시켜 에너지 변환 성능 지수를 최대 2배 이상 향상시킬 수 있는 기술로서, 탄소나노튜브를 먼저 산소와 결합시킨 뒤 이를 중심으로 비스무스 테루라이드계 열전 소재 결정이 탄소나노튜브를 둘러싸면서 결합하도록 해 열전 분말을 제조했다.

비스무스(Bi)와 테루륨(Te)이 각각 금속계 원소인 만큼 산화가 잘되는 금속의 성질을 역이용해 일부 계면에서만 산화되게 함으로써 기존 소재가 가지고 있는 특성을 유지하면서도 결합이 원하는 상태로 변환시켜, 탄소나노튜브의 균질한 분산 및 혼합이 가능하도록 했다. 23)

2015년, 기초과학연구원(IBS) 나노구조물리 연구단은 삼성전자 종합기

술원과 성균관대, 강원대와 공동으로 비스무스 안티몬 셀룰라이드 화합물을 이용해 사람 몸의 체온을 전기로 바꾸는 효율을 종전보다 2배로 끌어올린 열전 소재를 만드는 기술을 개발했다. 연구팀은 기존에 열전 소재로 사용했던 비스무스 안티몬 텔룰라이드(Bi-Sb-Te) 계열의 소재로 가루에 열을 가하고 압축해 한 덩어리로 만드는 이른바 ‘소결’ 기술을 활용하여, 전자만 잘 이동하고 열은 잘 통하지 않은 특성의 소재를 개발한 것이다. 손바닥의 4분의 1 크기의 소자로 만들면 작은 전구나 발광다이오드(LED)를 켜 수 있는 수준이다. 24)

2014년 한국과학기술원(KAIST) 연구진은 웨어러블 전자기기(wearable electronics)의 전력공급원으로 사용될 수 있는 ‘입을 수 있는 열전소자’를 개발했다. 기존의 상용 열전소자는 세라믹 기판을 이용해 단단하고 휴어지지 않는다. 또 무게가 무겁고, 낮은 에너지 효율로 인해 웨어러블 전자기기에 활용하기에는 부족하다는 단점이 있었다. 이 단점을 극복하여 개발된 열전소자는 유리섬유를 이용함에 따라 의류형태의 자유로운 가공이 가능하다. 또 무게가 가볍고, 전력생산 효율도 높아서 같은 무게의 기존 세라믹 기판 소자에 비해 14배 정도의 전력생산 능력을 가지고 있다.

24) 조선비즈, 삼성전자-IBS, 세계 최고 수준 열전소재 기술 개발, 2015.04.03
(a) 유리섬유상에 스크린프린팅 공정기법을 이용하여 열전후막을 형성.
(b) 금속전극 전사기술을 이용하여 초경량 고출력 유연 열전소자 제작.
(c) 밴드 타입으로 제작된 유리섬유 기반 열전소자를 인체에 적응하여 전기에너지 발생 검증

이번에 개발된 열전소자를 팔에 두면 두를 수 있는 가로 세로 각 10 cm의 밴드 형태로 제작한다면, 이부 기온이 20°C 일 때(체온과 약 17°C 차이가 있는 경우)는 약 40 mW의 전력이 생산되므로 원만한 반도체 칩들을 다 구동할 수 있다. 상의 전체에 해당하는 면적 (50 cm x 100 cm)로 제작해 입으면, 약 2W의 전력이 생산되 면드폰 사용이 가능하다. 25)

세라믹연구원은 소결온도 증가에 따른 CuAlO2 세라믹의 열전특성 향상에 대한 연구를 수행 중이다. 소결온도의 증가는 porosity를 감소시켰으며, 전기전도도 증가에 따라 열전특성이 향상됨을 볼 수 있었고,

25) EBN, “‘입을 수 있는’ 전원발생소자, KAIST 연구진 개발”, 2014.04.07
Porosity 감소는 열전도도 증가에도 영향을 미치나 전기전도도 특성 변화에 더 크게 기여한다. 26)

연세대 인체에너지 변환 융합파이오니어 연구단은 옷을 입고 활동하는 것만으로 휴대전화를 충전하거나 비상시 위치정보 신호를 발생시킬 수 있는 수준의 전기를 생산하는 ‘자가발전 스마트 의류’를 연구하고 있다. 의류환경학과 김은애 교수는 2012년 7월 형상기억합금을 넣은 소방복을 개발했는데, 평상시에는 얇은 소방복이지만 화재 현장으로 들어서면 단열효과가 큰 공기층이 두겹게 형성된다. 27)

한양대 화학공학과 이정호 교수팀은 2013년 3월 태양전지에 사용되는 값비싼 투명전도막을 대체할 수 있는 상부전극 형성기술을 개발하였다. 이는 에너지 변환 효율을 비슷하게 유지하면서 실리콘 소모량을 기존 전지의 20% 이내로 낮춘다. 28)

충북대 하이브리드 자동차연구센터는 열전 하이브리드 기술을 연구하고 있는데, 효율적인 전기 생산을 가능케 하는 것은 물론 자동차 연비를 크게 끌어올리는 기술로 배기가스에 의한 대기오염을 감소시켜준다. 29)

에이스텍은 러시아로부터 열전재료를 공급받아 기계·설계적 기술을 접목, 최대의 성능을 이끌어내는 기술을 세계 최초로 개발했고, 이를

27) 중앙일보, “열 닭으면 부풀어오르는 소방복,” 2012. 7. 3.
29) 전자신문, “충북대 하이브리드 자동차 연구센터,” 2011. 5. 11.
활용해 항온항습기와 LCD 시험장비, 반도체 시험장비 등을 생산해 반도체기업에 공급하고 있다. 30)

HTRD는 열전소자 전문업체로 TF-Heater(건조장치), 폐열회수 발전 및 에너지 절감, 냉/온수 공급(Heat Pump), 냉장고, 소형 난방기, 중계기 및 산업용 항온장치 등에 열전소자를 적용하여 제품을 개발하고 있다.

삼성전자 종합기술원은 2009년 6월 열을 전기로 변화시키는 성능을 획기적으로 향상시키는 전기로 힘을 주는 자동차나 전자제품에서 발생하는 폐열을 전기로 바꿔 재사용할 수 있는 ‘인듐셀레나이드’ 열전소자를 개발하였다. 31)

뉴웨는 회로류, 환경축소, 금속재료, 에너지 저장 시스템, 무기재료화합물에 대한 연구와 이를 적용한 기술과 제품을 국내 기업에 제공하고 있다. ETRI와 공동으로 온도차에 의한 열기를 활용한 열전소자도 개발해 양산화에 성공하였다. 32)

아래 표는 국내의 열전소자 관련 연구현황을 정리한 것이다. 33)

<table>
<thead>
<tr>
<th>구분</th>
<th>기관/업체</th>
<th>연구 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>한국전기연구원</td>
<td>연설발전 소재(중저온용 Telluride계) 및 열전발전 시스템 설계제작</td>
<td>박수동 박사팀 : 폐열 이용 친환경 열전발전 기술 개발(2012)</td>
</tr>
<tr>
<td>재료연구소</td>
<td>Bi-Te계 열전분말제조, 냉각용 모듈개발(2011)</td>
<td></td>
</tr>
<tr>
<td>한국기계연구원</td>
<td>다결정 Bi-Sb-Te 박막 열전특성 형성으로 향상되는 연구</td>
<td>한승우 박사팀 : 박막열전 기술과 초소형 열전발전기 개발(2012)</td>
</tr>
<tr>
<td>전자통신연구원</td>
<td>정문규 박사팀 : 실리콘 나노소자 기술개발</td>
<td>총재용 박사팀 : 친환경 전기로 적응 가능한 소재개발(2013)</td>
</tr>
<tr>
<td>KIST</td>
<td>유석진 박사팀 : 하이브리드 에너지 하베스팅 연구</td>
<td></td>
</tr>
<tr>
<td>세라믹기술원</td>
<td>소결온도 증가에 따른 CuAlO2세라믹 열전특성 연구</td>
<td>Ca3Co4O9 p형 산화물과 (ZnO)/In2O3 n형 산화물 기반 열전모듈 개발(2011)</td>
</tr>
<tr>
<td>한국화학연구원</td>
<td>초저온 열전방적발전, 전산모사에 의한 열전물성 예측</td>
<td></td>
</tr>
<tr>
<td>대구경북과학기술원</td>
<td>열전소자(나노입자제조, 이방성제어)</td>
<td></td>
</tr>
<tr>
<td>연세대</td>
<td>Bi, PbTe 나노선 성장 및 열전소자 평가 기술 개발</td>
<td>인체에너지 변환 용합 파이오니아 연구단 자기발전 소방의류 연구</td>
</tr>
<tr>
<td>인체에너지 변환 용합 파이오니아 연구단</td>
<td>김은애 교수팀 : 열전소자 이용한 소방폭발제거(2012)</td>
<td></td>
</tr>
</tbody>
</table>

33) 한국전자통신연구원, 열전소자 시장 및 개발동향, 2014
<table>
<thead>
<tr>
<th>구분</th>
<th>기관/업체</th>
<th>연구 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>기업</td>
<td>에이스텍</td>
<td>열전소자 기술을 활용한 반도체 검사장비 생산
와인셜러 및 폐열화수 발전시스템 개발 및 판매</td>
</tr>
<tr>
<td></td>
<td>삼성전자</td>
<td>전자제품 폐열을 전기로 바꿔 재사용할 수 있는 열전소재를 개발</td>
</tr>
<tr>
<td></td>
<td>뉴웰</td>
<td>온도차에 의해 전기를 생산하는 열전소자 개발</td>
</tr>
<tr>
<td></td>
<td>제너릭스</td>
<td>반도체 열전소자와 세라믹 기술 접목한 MFC 원전기술 개발
발열소자 채택 부품/전력소자 줄인 초소형 냉정수기 출시(2011)</td>
</tr>
<tr>
<td></td>
<td>HTRT</td>
<td>열전소자 설계 및 응용 제품 개발, TE 쿨러, 냉온 유니트, 하이브리드 히트펌프
건조기, 중계기</td>
</tr>
<tr>
<td></td>
<td>우창엔지니어링</td>
<td>폐열 활용 열전발전시스템 개발</td>
</tr>
<tr>
<td></td>
<td>테그웨이</td>
<td>웨아러블 체온 발전기 개발</td>
</tr>
<tr>
<td></td>
<td>웅진코웨이</td>
<td>열전 반도체 소자를 이용한 초소형 정수기 개발(2012)</td>
</tr>
</tbody>
</table>
제4절 해외 기술개발 동향 34)

1. 미국

미국은 초창기 우주·군사용으로 개발된 국가주도형 기술군에서 최근에는 다양한 상용 분야로 스피오프(Spin-off)화 하는 단계이며, 가장 역동적인 열전변환기술 관련 R&D가 수행되고 있는 국가다. 특히 특수 분야에서는 군사용 보조전원분야, 시장에서는 차량용 응용품 개발에 많은 역량을 투입하고 있다.

DARPA의 MPG(Micro Power Generation) 프로젝트에서는 열전발전기술을 이용한 모바일 초소형 동력발생장치를 적극적으로 연구개발하고 있고, 남가주대학(USC)·칼텍(CalTech)·미시간(Michigan) 주립대학·MIT·UCLA 등의 연구팀도 마이크로 동력발생장치에 대한 연구를 수행하고 있다.

34) 한국전자통신연구원, 열전소자 시장 및 개발동향, 2014
러져 있다.

미국의 ‘Caterpillar Thermoelectric’ 프로젝트에 참여 중인 NREL(National Renewable Energy Laboratory)는 열전도도와 전기전도도를 엔지니어링하는 프로젝트를 수행 중이며 Heavy-Hybrids(대형 운송 수단·탱크로리·대형 트럭 등)로부터 발생하는 폐열의 재활용에 관한 연구를 수행 중이다. 35)

캘리포니아공대 재료과학과 제프리 스나이더 박사팀은 2011년 5월 높은 변환 효율을 갖는 열전소자 재료를 개발했다. 납과 탄소, 셀레늄 합금의 나노 구조를 개선해 약 576도(850K)에서 성능지수 1.8를 얻었다.

퍼듀대 연구진은 2010년 12월 자동차의 폐열로부터 전기를 얻는 새로운 시스템인 열전발전기를 개발하였다. 열전발전기는 충전 베타리와 자동차 전기시스템으로부터 전기를 생성시켜서 엔진의 부하를 경감하고 연비를 개선시킨다.

35) 재료연구소, 소재기술백서 2010, 2010
GM과 포드는 머플러에 열전제료를 입혀 폐열을 전기로 바꿔 다시 엔진의 보조전력으로 사용하거나 차량시트 난방등에 활용하는 기술을 개발해 자동차 연료효율을 높이는데 주력하고 있다.

Ameringon BSST는 미 에너지부의 지원을 받아 배기구에서 나오는 폐열을 열전 발전소자를 이용해 수확하고 이를 변환하여 압축에 배터리 충전방식으로 자동차의 연료효율도 높이고 에너지도 동시에 절약하는 열전 발전소자를 개발하고 있다. 기존 모듈이 열류방향과 평행하게 구성된 기존 모듈 형상과는 달리 열류방향에 직각으로 배열된 일명 ‘Y모듈’을 개발해 기존 모듈에 비해 향상된 에너지변환효율을 나타내는 것으로 보고하고 있다.

<그림 2-16> BSST의 ‘Y 모듈’

Nextreme사는 2㎜도 안되는 작은 크기의 박막형 열전소자를 제작하였고 온도차가 70도에서는 16mW 이상, 온도차가 120도 이상에서는
45mW 출력을 발생하는 우수한 성능의 소자를 구현하였다. 36) Nextreme사는 2013년 Laird사에 인수되었다.

벤처기업인 Flame Stower사는 제백효과를 이용한 열전환소자를 적용한 USB로 발화시킬 수 있는 Fire Charger를 개발하였다. USB 충전기의 스펙은 전압 5V, 전력 2-3W, 무게는 230g, 크기는 20×6×3cm이다.

<표 2-3> 미국의 열전소자 연구현황

<table>
<thead>
<tr>
<th>기관명</th>
<th>주요 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA-JPL</td>
<td>중고온용 열전소재 (Zintl 및 세크먼트형 모듈)</td>
</tr>
<tr>
<td></td>
<td>우주용 방사성 동위원소를 활용한 열전발전시스템(RTG)</td>
</tr>
<tr>
<td></td>
<td>- 파이오니아, 아폴로, 보이저 1, 2호에 수백W급 RTG 사용</td>
</tr>
<tr>
<td>버클리대</td>
<td>실리콘 나노선 성장 및 열전특성분석 - 단일나노선(상향식)</td>
</tr>
<tr>
<td>캘텍</td>
<td>실리콘 나노선 성장 및 열전특성분석 - 단일나노선(상향식)</td>
</tr>
<tr>
<td>오하이오대/캘리포니아공대</td>
<td>연비향상 가능케 하는 신소재 개발(2008)</td>
</tr>
<tr>
<td>퍼듀대/GM</td>
<td>폐열로부터 전기를 얻는 자동차 열전발전기 개발(2010)</td>
</tr>
<tr>
<td>MIT</td>
<td>나노 컴퍼지트, 양자제어형 열전소재</td>
</tr>
<tr>
<td></td>
<td>폐열활용 열전발전기</td>
</tr>
<tr>
<td>Michigan주립대학</td>
<td>열전발전용 소재 (스쿠테루다이트계)</td>
</tr>
<tr>
<td></td>
<td>차량용 열전발전기</td>
</tr>
<tr>
<td>Northwestern대학</td>
<td>열전발전용 소재 (LAST-m계, 나노<L 제어)</td>
</tr>
<tr>
<td>S.Florida 대학</td>
<td>나노 컴퍼지트형 열전소재</td>
</tr>
<tr>
<td>CALTEC</td>
<td>열전소재(Zn4Sb3)</td>
</tr>
<tr>
<td>Clemson 대학</td>
<td>나노차원 열전소재 및 나노컴퍼지트 열전소재</td>
</tr>
<tr>
<td>Teledyne Energy Systems</td>
<td>군용 0.1kW급 TEG 개발(1985)</td>
</tr>
<tr>
<td>Global Thermolectric</td>
<td>군용 0.1kW급 TEG 열발전기(1986)</td>
</tr>
<tr>
<td>GE</td>
<td>SP-100 우주용 100kW급 NTG 제작(1988), Manportable TE generator 개발(1973)</td>
</tr>
<tr>
<td></td>
<td>120kW급 열전 해양열 에너지 변환장치 개발(1979)</td>
</tr>
<tr>
<td>GM</td>
<td>열전발전용 소재 (스쿠테루다이트계 등)</td>
</tr>
<tr>
<td></td>
<td>차량용 TEG 개발-TEG모듈 개발 중</td>
</tr>
<tr>
<td>Amerigon-BS ST</td>
<td>열전발전용 소재 (나노기반.Classes 등)</td>
</tr>
<tr>
<td></td>
<td>차량용 열전발전모듈 (세그먼트형)/차량용 냉난방 공조시스템 등</td>
</tr>
<tr>
<td>Nexteme</td>
<td>2mm이하의 박막형 열전소자 제작</td>
</tr>
<tr>
<td>HI-Z</td>
<td>양자제어형 열전모듈</td>
</tr>
<tr>
<td></td>
<td>군용 열전발전 및 공조 시스템</td>
</tr>
<tr>
<td></td>
<td>우주용 방사성 동위원소를 활용한 열전발전 시스템(RTG)</td>
</tr>
<tr>
<td>RTI</td>
<td>박형 열전냉각 모듈</td>
</tr>
<tr>
<td>Marlow</td>
<td>열전소재 (텔루라이드계)</td>
</tr>
<tr>
<td></td>
<td>열전냉각 및 발전용모듈</td>
</tr>
</tbody>
</table>
2. 일본

일본은 금속계 열전소재 및 모듈의 경우 이미 기업 주도의 상용 기술군으로 분류하고 있다. 각 기업에 대응한 맞춤형 기술들이 기업 자체적으로 개발될 정도로 산업화의 준비가 잘 갖춰진 상태이나 각 보유기술의 구체적 현황에 대해서는 대외적으로 잘 알려지지 않고 있다. 국가 R&D에서 금속계는 기업주도, 산화물계는 학연주도로 수행되는 특징이 있다.

2005년 일본 산업기술종합연구소 (AIST: Advanced Industrial Science and Technology)는 공기 중의 800℃에서 작동시켜도 성능이 열화 되지 않는 산화물계통 열전변환재료 (n형LaNiO3, p형 Ca₃Co₄O₉)를 사용하는 열전발전모듈을 개발하였다. p형 열전변환재료인 Ca₃Co₄O₉는 비늘모양의 입자이다. ZT를 높이기 위해서는 입자를 조밀하게 소결시키고 입자를 배향시켜 저항률을 감소시켜야 하는데 이를 위해 가압소결법 (HotPress법)을 제조방법으로 선택하였다. 37)

<그림 2-18> AIST의 열전발전모듈

37) KISTI, 산화물 열전변환재료의 온도차를 이용한 발전기술, 2010
2010년, AIST 에너지기술 연구부문의 폐열변환그룹은 히로시마대학 대학원 첨단물질과학연구과, 야마구치대학 대학원 이공학연구과, 주식회사 KELK, 주식회사 덴소와 공동으로 발륨(Ba), 갈륨(Ga), 주석(Sn)을 이용하여 새로운 열전재료를 개발하여 그것을 이용하여 열전 발전 모듈을 제작하였다.

제작한 열전 발전 모듈은 온도차 300도(H:330도, L:30도)에서 발전 출력 1.7W, 발전효율 약 4%를 나타내어 기존 열전 발전 모듈과 동등한 수준의 발전성능을 가진 것으로 실증되었다. 참고로 비스무트 텔루리드(bismuth telluride, Bi2Te3)/안티몬 텔루리드(antimony telluride, Sb2Te3) 계 열전발전재료는 200~250°C의 폐열에 적응 가능하며, 발전효율은 약 5%이다.

Ba, Ga, Sn는 각각 금속이지만, 일정 조성비로 하면 바구니모양의 결정구조를 가진 화합물 반도체가 된다. 이러한 바구니모양의 화합물은 일반적으로 포접화합물(Clathrate)로 불리나, 바구니 속에 원자(이번은
Ba원자)가 존재함으로써 열의 전파를 억제하는 성질을 갖는다. 이 때문에 비스무트 텔루리드/안티몬 텔루리드계 열전재료를 뛰어 넘는 높은 성능을 기대할 수 있다. 또한, Ba-Ga-Sn계 포집화합물은 기본적인 조성비에서 조금 벗어나게 되면 p형, n형 양쪽 모두 열전재료가 되는 특징이 있다. 이 때문에 p형, n형의 열적, 기계적 성질이 같게 되며, 양쪽 모두 조합한 모듈설계가 간단하며, 제조공정의 공동화가 가능하다는 등 다른 열전재료계에 비하여 유리하다.

이번 p형과 n형의 Ba-Ga-Sn 다결정에 확산방지 등의 표면처리를 하고, p형은 5.0mm, n형은 4.1mm, 높이는 각각 2.5mm로 잘라 열전발전 소자로 하였다. 8그룹의 pn소자에 금속전극을 설치하여 하프스켈레톤 (half skeleton)형 열전발전 모듈의 시제품을 제작하였다. 이 열전발전 모듈의 외경사이즈는 28.0mm×28.0mm×5.5mm이며, 기판을 포함한 증량은 약 15g이었다. AIST의 열전 발전 모듈 평가장치를 사용하여 절소 분위기 속에서 하부온도를 30°C로 하고, 상부온도를 330°C까지 가열하여 최대 30°C 온도차의 발전특성을 측정하였다. 온도차 30°C일 때의 개방전력은 약 1.03V, 내부저항은 155mΩ, 최대발전출력은 1.71W, 통과 열량 44.2W이며, 이들로부터 계산한 발전효율은 3.9%가 되었다.

2011년, AIST 플렉시블 일렉트로닉스연구센터의 표시기능디바이스팀은 플라스틱 필름 및 종이 등 플렉시블 기판위에 열전변환소자를 인쇄하여 형성하는 기술개발에 성공하였다. 본 기술은 열전변환소자를 필름 형태 소자로 하여 높은 유연성을 부여함으로써 설치 장소의 형태에 제약을 받지 않고 설치할 수 있다. 또한, 인쇄에 의한 제조 프로세스로 저비용화, 자원절약화가 가능하다.
열에너지를 전력으로 변환하는 열전변환소자의 이용을 촉진하기 위해서는 고전환 효율화, 저비용화와 함께 다양한 형태의 폐열부에 설치 가능할 수 있는 편리성을 향상시키는 것이 필요하다. 산업기술종합연구소에서는 저비용 제조 프로세스인 인쇄법을 이용하여 플렉시블 열전변환소자를 형성하는 기술을 개발해 온 결과, 탄소재료를 수지 메트릭스 중에 나노수준으로 분산시킨 복합재료가 인쇄 가능한 재료로서는 종래의 것보다 1.5배 이상 높은 발전능력을 나타내었다. 또한, 이 재료용액을 잉크로서 필름 기판위에 인쇄 소자를 형성하면 양호한 온도차 발전 동작을 나타내는 필름 형태의 열전변환소자를 형성할 수 있다.

이번 연구는 기계적 분산법을 이용하여 분산제를 사용하지 않고 카본나노튜브를 고분자 용액 중에 분산시키는 기술을 개발하였다. 개발한 카본나노튜브-고분자 복합재료를 용매에 용해되도록 재료를 조정하여 잉크화시켰다. 이 잉크를 이용하여 인쇄에 의한 패턴을 형성하고 전조소성시험으로써 나노수준으로 카본나노튜브를 분산시킨 카본나노튜브-고분자 복합재료로부터 열전변환재료를 형성하였다. 이 방법으로 제작한 카본나노튜브-고분자 복합재료는 분산제에 의한 초전압 저하가 없기 때문에 제배크계수가 0.13mV/K가 되어 종래법으로 제작한 경우와 비교하여 약 3배 향상되었다. 38)

38) KISTI 미리안, 인쇄하여 만든 유연한 열전변환소자, 2011.10.04
<그림 2-20> 카본나노튜브-고분자 복합재료 형성방법(위)과 전자현미경 사진(아래)

<그림 2-21> 인쇄법에 의해 제작한 플렉시블 열전변환 필름(왼쪽)과 발전능력 실험(오른쪽)

NEDO 프로젝트는 ‘고효율 열전 변환 시스템 개발’이라는 국가주

39) NEDO Project : Development of Nano-Structured Thermoelectric Materials using Clathrates
도형 프로젝트이다. 2002년부터 2007년까지 5년 동안 250억원대의 연구비로 수행됐으며 IHI・UBE・Eco21・Komatsu・Toshiba・Yamaha 등의 회사가 참여했다. 대표 성과로는 중온 열원(500~600℃)에 대해 에너지변환효율 15%이상의 복합발전모듈 개발이 보고 됐다.

2011년부터 New NEDO 프로젝트가 개시되었는데 철강의 폐열 회수를 위한 열전발전 기술개발을 목표로 수행되고 있다. 40)

이 프로젝트에 참여한 일본 JFE스틸은 2013년 3월부터 동일본제철소에서 폐열을 이용한 열전발전기술 실증시험을 진행하였으며, 2013년 7월 계획대로 10Kw급 전력을 얻을 수 있었다. 이러한 규모의 열전발전시스템 실증시험은 세계최초이며, 2014년 2월까지 내구성, 신뢰성을 확인함으로써 발전효율을 향상시키고, 설치면적을 늘려서 100Kw급 전력을 얻을 계획이다.

<그림 2-22> 철강의 폐열을 이용한 열전발전 실증시험

JST프로젝트41)는 2013년 5월 독창적 시리즈 전개 사업의 개발과제로

열전교환소자와 연료전지를 조합한 배기가스 발전시스템의 개발에 성공하였다. 자동차에서 배출된 열과 미이용 연료를 전기에너지로 회수하는 발전장치로 환경 부하 경감에 기여한다. 42)

민간기업의 열전 응용개발로는 폐열 회수 시스템(Waste Heat Recovery systems)에서 1) 산업용 용광로(Industrial furnaces)는 고마쓰/KELK, 쇼와케이블시스템, TEC New Energy 등이, 2) 오토바이/자동차는 Atsumitec, 고마쓰 등이, 3) 소각로(Incinerator)는 쇼와전공/Plantec, Actree 등이 개발하고 있다.

<그림 2-23> 일본 Showa KDE에서 개발한 Mg2Si계 열전발전모듈.

신재생 에너지 요소(Renewable Energy sources)에서 1) 태양열에너지(Solar thermal energy)는 TDS그룹, Jaxa 등이, 2) 온천(hot springs)은 TEG(도시바) 등이 개발하고 있다.

에너지 혜택팅(TEG)은 1) Monolithic micro TE Gene-rator는 무라

41) JST project : Development of High-Efficiency Thermoelectric Materials and Systems
42) 科學技術振興機構, “熱電交換素子と燃e電池を組み合わせた’排ガス発電システム’の開発に成功,” 2013. 5. 7.
타 제작소가, 2) 미니 사이즈 TEG 시스템은 야마하와 KELK가 개발하고 있다.

일본 후지쯔연구소는 빛과 열로부터 전력을 만들어 내는 새로운 하이브리드형 발전디바이스를 개발하였다. (1) 하이브리드형 발전디바이스 - 빛과 열등치에 각각 존재하는 경우에 2개의 반도체 재료(P형과 N형)의 접촉을 회로적으로 전환함으로써 광전지와 열전소자 두 개의 기능을 실현하였다. (2) 하이브리드형 발전디바이스를 위한 유기재료의 개발 - 광발전과 열발전 양쪽에서 발전 가능한 유기재료를 개발하였다. 실내광에서도 발전능력이 높고, 열로도 발전이 가능하다. 저가의 유기재료에 의해 제조비용을 대폭적으로 저감할 수 있다. 43)

파나소닉은 2012년 12월 종래에 비해 5배 20kgf/mm² 하중 강도를 견딜 수 있는 열전환소자를 사용해 발전량을 늘린 열전환모듈을 개발하였다. 모듈의 강도 확보를 위해 전도 효율이 높은 동판이나 곡면 밀착설치에 적합한 필름소재를 사용한다.

43) KISTI 미리안, 빛과 열로부터 전력을 만드는 하이브리드형 발전디바이스를 개발, 2010.12.13
TDDI(熱電素子開發)는 펜티어 소자 및 열전변환 디바이스 개발, 열전시스템 제품의 제조, 펜티어 냉장고 등의 냉각시스템을 판매하고 있다. PV-2는 고성능, 고신뢰성을 갖춘 새로운 구조의 펜티어 유닛이다. 열전소자를 응용한 제품은 니혼슈(日本酒) 및 빵 등 발효 및 숙성식품의 보관, 온도관리에 사용되는 펜티어 냉장과 와인 셀러가 대표적이다.

Z-Max는 2012년 페르체 모듈로 작고 소음 없는 미래의 냉장고를 구현하였다. 열전소자 페르체 모듈은 전자가 이동하면서 방출하는 열에너지를 한쪽에서 흡수하고 다른 쪽에서 방출하는 소자로 청소기, 소형냉장고 등에 적용한다.
<표 2-4> 일본의 열전소자 연구현황

<table>
<thead>
<tr>
<th>기관명</th>
<th>주요 내용</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIST</td>
<td>열전소재(산화물계, 태루라이드계) / 열전모듈</td>
</tr>
<tr>
<td>과학기술진흥기구(JST)</td>
<td>열전 교환소자와 연료전지 조합 배기가스 발전시스템 개발(2013)</td>
</tr>
<tr>
<td></td>
<td>물을 이용해 절연체로부터 효율 좋은 열전재료 제조(2010)</td>
</tr>
<tr>
<td>나고야 대학</td>
<td>산화물계 열전소재</td>
</tr>
<tr>
<td>고마쓰/KELK</td>
<td>표준형 열전모듈 및 고효율 복합열전모듈(케스케이드형) 펜열회수 TEG 시스템 개발</td>
</tr>
<tr>
<td>무라타제작소</td>
<td>에너지 하베스팅 TEG개발</td>
</tr>
<tr>
<td>TOYOTA</td>
<td>차량용 열전발전시스템</td>
</tr>
<tr>
<td>DENSO</td>
<td>열전소재 및 모듈</td>
</tr>
<tr>
<td>Ferotech</td>
<td>열전소재 / 열전모듈</td>
</tr>
<tr>
<td>Toshiba</td>
<td>열전발전용 소재 / 열전발전용 모듈</td>
</tr>
<tr>
<td>YAMAHA</td>
<td>미니사이즈 TEG 시스템 개발</td>
</tr>
<tr>
<td>파나소닉</td>
<td>열전교환소자를 사용해 발전량 늘린 열전교환모듈 개발(2012)</td>
</tr>
<tr>
<td>쇼와전선케이블</td>
<td>폐열을 이용해 전기 발생시키는 열전변환소자 개발(2009)</td>
</tr>
<tr>
<td>TDDI</td>
<td>펜티어 냉장고 및 와인셀러 개발</td>
</tr>
<tr>
<td>Z-Max</td>
<td>펜트모듈로 작고 소음없는 미래냉장고 개발(2012)</td>
</tr>
</tbody>
</table>

3. 유럽

유럽의 열전소자 연구는 EU의 FP-7을 중심으로 대학과 프라운호퍼(Fraunhofer) 등 연구소를 중심으로 기술개발이 활발히 수행되고 있으며 벤츠, BMW, 폭스바겐 등의 자동차업체들은 폐열을 최수해 연료효율을 높이는데 중점을 두고 있다.

EU의 FP(Framework Programme) 7 NMP(Nanosciences,
nanotechnologies, materials & new production technologies)는 2011년부터 2014년까지 나노과학, 나노기술, 소재 및 신생산기술 등을 대상으로 수행되며 TE materials ZT ≥ 3을 목표로 하고 있다.

예산은 총 2,170만 유로(1,470만 유로 펀딩)이며, 참가국은 독일, 프랑스, 영국, 스웨덴, 스페인, 이탈리아, 그리스, 오스트리아, 스위스, 폴란드, 키프러스, 러시아, 리히텐슈타인 등이다.

2013년, 독일 드레스덴(Dresden)에 위치한 프라운호퍼 재료 및 빔 기술 연구소(Fraunhofer Institute for Material and Beam Technology)의 Aljoscha Roch 박사 연구팀은 이러한 열전 발전기를 위한 새로운 제조 공정을 하노버 무역 박람회에서 공개하였다. 새로운 열전 발전기 제조 방법은 저렴하며, 비독성 합성 재료를 이용하여 넓은 면적에서 유연한 성분의 형태로 만들 수 있게 한다.
연구팀은 3차원 인쇄기 공정을 이용하여 열전 발전기를 만드는데 성공했다. 이 소형 발전기는 저렴하게 만들어질 수 있을 뿐만 아니라, 사용된 재료로는 전도성을 가지는 무해한 폴리머가 사용되어 환경 친화적이다. 종래의 열전 발전기는 예를 들어 납을 포함하는 독성 요소를 이용해 수작업으로 생산되고 있다. 연구팀은 열전 발전기를 제작하기 위하여 이제 최신의 3차원 인쇄기술을 이용하고 있으며, 재료로는 전도성을 가지는 무해한 폴리머가 사용된다.

새로운 인쇄 기술은 전열적으로 활성화된 폴리머 반죽이 카트리지로부터 분사되어 20~30마이크로미터 두께의 열전층을 만든다. 열전 발전기가 온도 차이로부터 전압을 형성하기 위하여서는 특정한 두께를 가져야 한다. 현재 이용 가능한 3차원 인쇄 공정은 이러한 얇은 두께를 달성하는데 매우 적당하다. 44)

44) KISTI 미리안, 3차원 인쇄기를 이용한 열전 발전기 제작, 2013.03.29
벤츠와 BMW는 자동차 머플러에 열전소자를 장착해 폐열을 전기로 바꿔 엔진 보조전기나 시트 냉난방에 활용하는 기술을 개발하고 있다. 에너지 하베스팅의 일환으로 방출되는 열을 열전소자를 이용하여 재활용하는 연구를 진행 중이다.

<그림 2-26> Micropelt제의 열전소자
<표 2-5> 유럽의 열전소자 연구현황

<table>
<thead>
<tr>
<th>국가</th>
<th>주요 내용</th>
</tr>
</thead>
</table>
| 독일 | 박막형 열발전기 개발 (1962)
열전류발생기 개발 (1967)
BMW: 차량용 TE G 개발-5 시리즈에 장착, 시범 운행 중
폭스바겐: 열전발전기 개발해 디젤 수송차량에 장착
Micropelt: 열전발전을 이용한 환경발전용 소자 및 모듈 개발 (2012)
프라운호퍼 연구소 : 3차원 인쇄기술을 이용한 열전발전모듈 개발 (2013) |
| 러시아 | 군사용 열발전기 개발: 레이다용 전원공급장치
휴대용 통신판대 전원공급시스템 (2.5W - 160W)
송유관, 가스공급관 음극 부식 방지용 전원공급시스템
핵잠수함 전원공급시스템 (2MW 급)
램프 이용 리디오 전원용 열발전기 (1.6~3W급)
태양열 열발전기 개발 (1967) |
| 프랑스 | RTG 개발 (1969)
연소식 열발전용 재료, 연소실, 열교환기 등 개발 (1973) |

4. 기타

가. 중국

최근 녹색기술에 대해 국가적 지원과 투자를 아끼지 않고 있는 중국은 열전분야에 대해서도 대규모 R&D를 지원하고 있다.

열전분야의 대표적 연구사업으로는 ‘National 973 Program Of China’의 일환으로 진행 중인 ‘High Efficiency TE Materials & Devices’ (연구기간 2007∼2011년, 연구비 3,000만위안), ‘Development For Key Techniques and 5-10 kW Level Distributed Hybrid System’
이 있고, 일본과의 국제공동 연구사업인 ‘1kW-Level PV-TE Hybrid System’ 개발 사업 등이 있다.

나. 사우디아라비아

사우디아라비아 KAUST의 연구진은 유연한 실리콘 위에 열전 발전기를 만드는데 세계 최초로 성공했다. 이 장치는 이전의 이러한 발전기보다 30 배 더 많은 전력을 발생할 수 있고, 휴대폰, 랩톱, 생의학적 센서, 기타 휴대용 장치 등의 다양한 분야에 적용될 수 있을 것이다.

Muhammad Mustafa Hussain이 이끄는 이번 연구진은 저렴한 벌크 단일 결정질 실리콘 위에 비스무스 텔루라이드(bismuth telluride)와 안티몬 텔루라이드(antimony telluride)를 적층시켰다. 그 후에, 이번 연구진은 최첨단 CMOS 호환 프로세스를 사용해서 그들을 유연하고 투명한 시스템으로 변환시켰다. 실리콘 층은 단지 18μm의 두께를 가지고 63개의 열전퇴(熱電堆, thermopile)를 포함한다.

<그림 2-27> KAUST의 유연한 실리콘 위 열전 발전기
이번 연구진이 만든 열전 발전기는 0.15 \(\mu W \)의 전력을 발생시키는데, 이것은 이전에 만들어진 이런 종류의 장치보다 30 배 이상 더 많은 전력을 발생시킨다. 아주 얇은 실리콘은 장치의 뜨거운 말단에서 차가운 말단까지 열 손실을 최소화하기 위해서 트렌치(trench)를 가진다. 최종 장치에서 생성된 전력은 생체 내에서 작동되는 생의학적 장치와 센서 속의 CMOS 회로에 전원을 공급할 정도로 충분히 크다.

전력 출력은 실리콘 기판의 감소된 절단면과 실리콘 기판이 매우 유연하다는 사실 때문에 30% 향상되었다. 또한 기계적 유연성은 이 플랫폼이 다양한 표면, 심지어 불규칙한 형상을 가진 표면 위에도 집적될 수 있기 때문에 이런 유형의 장치를 위한 잠재적인 적응의 수를 매우 증가시킨다. 유연하고 반투명한 고성능 열전 발전기는 저렴한 볼크 단일 결정질 실리콘 (100) 웨이퍼 위에 제조되었다. 사용된 실리콘은 열손실을 상당히 감소시키면서 두께가 볼크 실리콘의 3.6%에 불과하다.

45) KISTI 미리안, 매우 높은 성능을 가진 새로운 열전 발전기, 2013.12.20
제5절 국내외 특허 동향

열전발전에 대한 특허는 크게 ① 열전효율 향상을 위한 나노구조체 열전소재 기술 ② 자동차 배기열 회수 고효율 열전시스템 기술 ③ 열 전특성 측정 기술 ④ 고효율 Thermophotovoltaic 발전시스템 기술 ⑤ 플렉시블 열전소자 기술 ⑥ 열전발전 모듈 및 열전발전시스템 제작 기술로 나눌 수 있다.

나노구조체 열전소재 기술은 나노기반 금속계 열전소재 및 모듈, 나노 기반 박막형 열전소재 및 모듈, 나노 기반 세라믹계 열전소재 및 모듈, 열전재료 설계 및 구현 기술개발, 나노임베디드 열전발전 모듈로 구분할 수 있다. 또한 고차 나노구조 소재개발 기술로는 나노블러크/나노 기공 구조형성에 의한 적자구조 제어기술, 미립자 합성 및 고용에 의한 전자이동 제어기술, 전자구조/나노 도메인 튜닝에 의한 전하/포논 제어 기술, 후막 소재의 결정립계 제어에 의한 열전도 제어기술 및 나노 스파이 입자 형성에 의한 미세조작 제어 기술 등으로 나눌 수 있다.

자동차 배기열 회수 고효율 열전시스템 기술은 중고온/중저온 복합 TEG 시스템 모듈 최적화 기술과 실차 매칭 기술 및 시스템 종합 성능 평가 기술 등으로 분류할 수 있다.

열전특성 측정기술은 나노스케일 열전특성 All-in-One MEMS 기반 측정기술, 열전소자/모듈의 고정밀 All-in-One 열전특성 측정 및 평가 기술, 열전특성 평가장치의 SI단위 소급기술 및 교정용 기준물질 (인증 표준물질 : CRM - Certified Reference Material) 개발 등이다. 고효율
Thermophotovoltaic 발전시스템에 관한 기술은 Thermophotovoltaic 시스템 기술, 이미터(Emitter) 및 필터기술, Narrow bandgap 반도체 열광전변활セル 기술 등이 있다.

최근에는 플랙시블 열전소자와 열전발전소재 기술을 활용한 열전발전 모듈 및 열전발전시스템 제작기술 등의 특허들이 증가하는 추세이다.

아래 표는 최근 5년간 국내 기관 및 업체에서 출원한 열전발전소자 및 열전발전에 관한 특허이다. 현대자동차와 한온시스템(한라비스테온공조)을 중심으로 한 자동차용 열전발전관련 특허가 주를 이루고, 선박 또는 열차에 열전발전을 적용한 특허 기술과 한국과학기술원의 플랙시블 열전소자, 한국전기연구원의 밀봉구조를 갖는 열전발전모듈 특허가 눈여겨 볼만한 기술로 판단된다.
<표 2-6> 열전소자 및 열전발전에 관한 국내 특허 (공고연월 기준 최근 5년간)

<table>
<thead>
<tr>
<th>특허번호</th>
<th>발명의 명칭</th>
<th>출원연월일</th>
<th>공고연월일</th>
<th>특허권자</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1532042 -0000</td>
<td>열전발전용 유동 조절 베인을 포함하는 이코노미어저 및 이를 포함하는 열전발전 시스템</td>
<td>2014.02.13</td>
<td>2015.06.29</td>
<td>삼성중공업주식회사</td>
</tr>
<tr>
<td>10-1514254 -0000</td>
<td>진동차단형 열전발전장치</td>
<td>2013.11.20</td>
<td>2015.04.22</td>
<td>자동차부품연구원</td>
</tr>
<tr>
<td>10-1490632 -0000</td>
<td>열전 발전 시스템 점검 장치 및 점검 방법</td>
<td>2013.11.18</td>
<td>2015.02.06</td>
<td>주식회사 포스코</td>
</tr>
<tr>
<td>10-1493792 -0000</td>
<td>플랙시블 열전소자 및 그 제작방법</td>
<td>2013.11.08</td>
<td>2015.02.17</td>
<td>한국과학기술원</td>
</tr>
<tr>
<td>10-1493797 -0000</td>
<td>액체형 건판을 이용한 플랙시블 열전소자 및 그 재조방법</td>
<td>2013.10.18</td>
<td>2015.02.17</td>
<td>한국과학기술원</td>
</tr>
<tr>
<td>10-1517601 -0000</td>
<td>센박용 열전발전 시스템</td>
<td>2013.09.11</td>
<td>2015.05.04</td>
<td>삼성중공업주식회사</td>
</tr>
<tr>
<td>10-1454453 -0000</td>
<td>열전성능 향상을 위한 고온부 일봉 구조를 갖는 열전발전모듈</td>
<td>2013.08.09</td>
<td>2014.10.24</td>
<td>한국전기연구원</td>
</tr>
<tr>
<td>10-1469374 -0000</td>
<td>고효율 열전발전모듈 및 그 제조방법</td>
<td>2013.07.12</td>
<td>2014.12.04</td>
<td>전남대학교 산학협력단</td>
</tr>
<tr>
<td>10-1418002 -0000</td>
<td>열전모듈 열교환기를 이용한 축열조 발전 장치</td>
<td>2013.07.01</td>
<td>2014.07.14</td>
<td>한국지역난방공사</td>
</tr>
<tr>
<td>10-1514523 -0000</td>
<td>폐 가스 처리장치의 폐열을 이용하는 열전발전장치 및 그에 따른 전력 수요 장치의 무정지 운전방법</td>
<td>2013.06.29</td>
<td>2015.04.22</td>
<td>차진환</td>
</tr>
<tr>
<td>10-1449285 -0000</td>
<td>스택형 열전 발전 시스템</td>
<td>2013.05.21</td>
<td>2014.10.13</td>
<td>주식회사 포스코</td>
</tr>
<tr>
<td>10-1428613 -0000</td>
<td>열전발전장치의 열전모듈 연결구조</td>
<td>2013.04.16</td>
<td>2014.08.08</td>
<td>현대자동차주식회사</td>
</tr>
<tr>
<td>10-2014-0094064 (공개)</td>
<td>열전 발전과 열전 냉각을 동시에 이용하는 부품 및 장치에서 발생하는 열 확산 수단 및 방법</td>
<td>2013.01.19</td>
<td>2014.07.30</td>
<td>태양광발전도로㈜</td>
</tr>
<tr>
<td>10-1421956 -0000</td>
<td>자동차용 적층형 열전발전장치</td>
<td>2012.12.31</td>
<td>2014.07.22</td>
<td>현대자동차주식회사</td>
</tr>
<tr>
<td>10-1421953 -0000</td>
<td>자동차용 적층형 열전발전장치</td>
<td>2012.12.27</td>
<td>2014.07.22</td>
<td>현대자동차주식회사</td>
</tr>
<tr>
<td>10-1406346 -0000</td>
<td>철도 차량용 열전 발전 장치 및 그 방법</td>
<td>2012.11.14</td>
<td>2014.06.12</td>
<td>한국철도기술연구원</td>
</tr>
<tr>
<td>특허번호</td>
<td>발명의 명칭</td>
<td>출원연월일</td>
<td>공고연월일</td>
<td>특허권자</td>
</tr>
<tr>
<td>------------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>------------------------</td>
</tr>
<tr>
<td>10-1390688-0000</td>
<td>차량용 열전발전 장치</td>
<td>2012.10.25</td>
<td>2014.04.30</td>
<td>현대 자동차 주식회사</td>
</tr>
<tr>
<td>10-1309554-0000</td>
<td>산업용 폐열을 이용한 열전발전형 독립 전원 공급장치</td>
<td>2012.05.02</td>
<td>2013.09.24</td>
<td>권택율</td>
</tr>
<tr>
<td>10-1435667-0000</td>
<td>차량용 열전발전장치</td>
<td>2012.02.22</td>
<td>2014.09.23</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>10-1321010-0000</td>
<td>열전발전을 이용한 독립 전원 공급장치</td>
<td>2012.01.06</td>
<td>2013.10.29</td>
<td>리빙케어 소재기술(주)</td>
</tr>
<tr>
<td>10-1435669-0000</td>
<td>열전발전 열교환기 및 열전발전 모듈</td>
<td>2011.12.23</td>
<td>2014.09.23</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>10-1327732-0000</td>
<td>차량용 열전 발전기</td>
<td>2011.12.15</td>
<td>2013.11.11</td>
<td>현대 자동차 주식회사</td>
</tr>
<tr>
<td>10-1300758-0000</td>
<td>발전용 고효율 PoC형 열전모듈 및 그의 제조 방법</td>
<td>2011.11.15</td>
<td>2013.08.29</td>
<td>세종대학교 산학협력단</td>
</tr>
<tr>
<td>10-1304428-0000</td>
<td>열전 레그, 그 제조방법 및 발전용 열전 모듈</td>
<td>2011.08.12</td>
<td>2013.09.05</td>
<td>국방과학연구소</td>
</tr>
<tr>
<td>10-1306862-0000</td>
<td>차량용 열전발전 시스템</td>
<td>2011.03.08</td>
<td>2013.09.12</td>
<td>주식회사 엠아이서진</td>
</tr>
<tr>
<td>10-1270627-0000</td>
<td>차량의 배기가스를 이용한 열전 발전 및 배기열 회수 장치</td>
<td>2011.02.17</td>
<td>2013.06.03</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>10-1326570-0000</td>
<td>차량의 배기가스를 이용한 열전 발전 장치</td>
<td>2011.02.16</td>
<td>2013.11.08</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>10-1478785-0000</td>
<td>이차전지 운전열을 이용한 열전 발전 소자를 구비한 이차전지 시스템</td>
<td>2010.12.06</td>
<td>2015.01.05</td>
<td>주식회사 엠지화학</td>
</tr>
<tr>
<td>10-2012-0061202 (공개)</td>
<td>차량용 열전발전 장치</td>
<td>2010.12.03</td>
<td>2012.06.13</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>10-2012-0036113 (공개)</td>
<td>차량 배기 가스를 이용한 열전 발전 장치</td>
<td>2010.10.07</td>
<td>2012.04.17</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>10-1015608-0000</td>
<td>태양열을 이용한 적층형 열전발전 장치</td>
<td>2010.07.30</td>
<td>2011.02.16</td>
<td>한국기계연구원</td>
</tr>
<tr>
<td>10-2012-0008896 (공개)</td>
<td>소음기 일체형 열전 발전 시스템</td>
<td>2010.07.21</td>
<td>2012.02.01</td>
<td>현대 자동차 주식회사</td>
</tr>
<tr>
<td>10-1207815-0000</td>
<td>열전 발전 시스템 및 그 제어 방법</td>
<td>2010.06.03</td>
<td>2012.12.05</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>10-1295907-0000</td>
<td>차량 배기열을 이용한 열전발전장치 및 그 제조 방법</td>
<td>2010.05.28</td>
<td>2013.08.12</td>
<td>한온시스템 주식회사</td>
</tr>
<tr>
<td>특허번호</td>
<td>발명의 명칭</td>
<td>출원연월일</td>
<td>공고연월일</td>
<td>특허권자</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>------------</td>
<td>------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>10-1260776-0000</td>
<td>열전발전 열교환기</td>
<td>2010.04.15</td>
<td>2013.05.06</td>
<td>한 온시스템 주식회사</td>
</tr>
<tr>
<td>10-1129197-0000</td>
<td>자동차의 배열화수용 열전발전 시스템</td>
<td>2010.01.14</td>
<td>2012.03.26</td>
<td>자동차 부품 연구원</td>
</tr>
<tr>
<td>10-1477294-0000</td>
<td>차량용 열전 발전 장치 및 이를 포함하는 쿨링모듈</td>
<td>2009.12.23</td>
<td>2014.12.29</td>
<td>한 온시스템 주식회사</td>
</tr>
<tr>
<td>10-1138526-0000</td>
<td>폐열을 이용하는 열전발전시스템을 구비한 자동차</td>
<td>2009.08.13</td>
<td>2012.04.25</td>
<td>신상용/주식회사 에프에이치아이코리아</td>
</tr>
<tr>
<td>10-1111197-0000</td>
<td>냉각유체의 폐열을 이용한 열전발전시스템</td>
<td>2009.08.13</td>
<td>2012.03.13</td>
<td>신상용/주식회사 에프에이치아이코리아</td>
</tr>
<tr>
<td>10-1079325-0000</td>
<td>금속박판을 사용하는 열전소자</td>
<td>2009.04.28</td>
<td>2011.11.04</td>
<td>주식회사 앤 아이서진</td>
</tr>
<tr>
<td>10-1538068-0000</td>
<td>열전소자 및 그 제조방법</td>
<td>2009.02.02</td>
<td>2015.07.21</td>
<td>삼성전자 주식회사</td>
</tr>
<tr>
<td>10-0994508-0000</td>
<td>과산화수소를 열원과 냉매로 이용한 열전발전 모듈</td>
<td>2008.12.09</td>
<td>2010.11.15</td>
<td>한국과학기술원</td>
</tr>
<tr>
<td>10-0977403-0000</td>
<td>수직 열매 대류식 고효율 적층 열전발전시스템</td>
<td>2008.11.11</td>
<td>2010.08.24</td>
<td>한국전기연구원</td>
</tr>
</tbody>
</table>
제6절 항후 기술전망

열전소재기술은 오래된 재래기술이지만 최근 나노과학의 발전에 힘입어 빠르게 성장하고 있으며 또한 전 세계적인 에너지 문제로 인해 연구수요가 크게 증가하고 있다. 따라서 국가 간 연구경쟁도 한층 치열해졌으며 그에 따라 열전성능 ZT값도 해가 갈수록 비약적으로 상승하고 있다. 비록 일부에서 열전모듈이 사용되고 있지만 아직 낮은 ZT값에 의해 시장이 제한적인데 ZT값이 2를 넘게 되면 열전소재 시장은 폭발적으로 성장하게 될 것이다.

최근 고효율 열전소재의 보고는 미국에서 주로 보고되고 있지만 그 속에는 중국연구자의 비중이 매우 크고 중국 내부에서도 양적으로 절적으로 엄청난 속도로 연구수준이 향상되고 있다. 따라서 우리나라도 이 분야에 발 빠르게 투자하여 노력한다면 열전소재가 미래 신성장 동력의 하나로 국가 경쟁력을 향상시키는데 크게 이바지할 것이라 생각한다. 46)

46) 월간 과학과 기술, 나노소재의 열전기술 응용, 2013
열전발전의 요소기술은 1) 열특성 구조 제어 기술과 2) 반도체 특징을 활용할 수 있는 열전소재기술과, 3) 각 단위 열전소자의 집적화 및 에너지 손실을 최소화하기 위한 모듈화기술, 그리고 4) 열원에 따라 열전 모듈을 최적화 하는 시스템화 기술로 나뉜다.

열특성 구조제어는 열과 전기 사이의 가역적, 직접적인 에너지 변환에 관한 기술로 제료의 나노구조를 이용하여 전자와 정공의 이동을 조절함으로써 열적 특성과 전기적 특성을 복합적으로 동시에 제어하는 기술을 말한다.
2000년대에 접어들면서 나노기술을 이용한 다양한 시도가 과학계 전반에서 이루어지면서, 기존의 반도체 재료를 이용한 열전소자의 나노화를 통해 열전특성이 향상될 수 있다는 사실이 이론적, 실험적으로 활발히 논의되고 있으며 지속적으로 연구될 것으로 보입니다. 다만 소자의 모듈화에 따른 패키징 기술, 대면적화, 안정성 부분에서는 많이 부족하기에 구체적인 시장이 형성되지는 못하고 있으며 이를 극복하기 위한 연구가 뒤따를 것으로 예상된다.

반도체 특징을 활용할 수 있는 열전소재기술은 저차원 구조체, 초정밀 결정구조를 갖는 박막, 나노선 구조체, 이중 복합체 구조 등 ZT 물성을 향상시키기 위한 새로운 개념의 열전반도체에 대한 연구가 주류를 이루고 있다.

그러나 무기소재 기반 열전재료는 기계의 진동으로 인해 쉽게 파손되는 단점이 있으므로, 열전소자 응용가능성이 가장 큰 자동차 관련 소재 적용에 한계를 가지고 있다. 또한 무기소재 기반 열전재료의 다층박막 구조에는 금속/세라믹 소재의 복합계면이 많이 존재하기 때문에 전체모들의 효율을 감소시키는 원인이 되며 열전소자의 대면적화를 어렵게 하는 요인이 된다.

취성이 높고, 복합계면이 존재하는 값비싼 무기계 열전소자의 단점을 극복하기 위하여 유기계 재료를 이용한 열전소자에 관한 연구가 시도되고 있다. 유기소자 기반 열전재료는 낮은 비용으로 대면적 공정이 가능하며 유연성 있는 소재로 인해 다양한 응용분야에 적용이 가능하다.
는 장점이 있다. 또한 전도성 고분자, 반도체 펄러 등을 이용한 몇몇 연구결과가 발표되고 있다. 아직까지는 반도체 재료 열전소자의 물성에 비해 낮은 성능을 보이고 있으므로, 좀 더 폭넓은 유기재료에 대한 기반연구가 필요한 실정이다.

최근에는 국내 연구진들에 의해 고분자 소재 및 나노펄러에 대한 나노기술이 보고되고 있으며, 이를 이용한다면 열전소자 분야에 뛰어난 개발효과를 보일 수 있을 것으로 예상된다.

단위 열전소자의 집적화 및 에너지 손실을 최소화하기 위한 모듈화 기술은 모듈화에 필요한 전극 접합기술, 온도 변동이나 장기간에 걸쳐 고온 환경에 대응할 수 있는 응력 완화 및 확산 방지기능을 갖춘 기술이 개발되고 있다. 또한 열원을 유 효하게 활용하기 위한 열교환면과의 전기절연성과 열전도성을 겸한 경계계면기술이 연구되고 있다.

열과 전기의 화학은 「고온단→전극→열전재료→전극→저온단」의 경로를 통과하므로 열전모듈의 구성에서는 이중재료 사이(절연체/전극 및 전극/열전재료)에 전기저항과 열전달저항을 최소화 할 수 있는 절연재료 및 전극재료의 선택과 접합기술이 매우 중요하다.

네 번째로 열원에 따라 열전 모듈을 최적화 하는 시스템화 기술이다. 기존에 연구되어 온 열전 재료의 대부분은 납, 비스무트, 텔루르 등의 회귀 금속을 주요 원료로 하여 제작된 금속 및 반도체이기 때문에 유연성이 부족해 곡면에 밀착시키는 것이 어려웠다. 이러한 이유로 대부분의 폐·방열 소스에 설치하는 것은 곤란하다고 여겨져 왔으나 최근
에는 비교적 저온 폐열을 대상으로 하여 전도성 고분자와 탄소 나노튜브를 사용한 유연한 열전 재료의 연구가 진행되어 상용화에 근접했음이 보고되고 있다.

몇 가지 더 추가하자면 친환경 소재의 개발, 하이브리드 에너지 하베스팅 기술이다.

상용화를 위해서는 소재 자체의 환경 안전성, 자원의 풍부함, 저가의 관점에서 연구가 필요하다. 현재 실용되는 열전재료는 Bi, Sb, Te, Pb 등과 같이 자원적으로 희소한 원소로 구성되어 가격도 비싸며, 융점과 비점이 낮은데다 독성도 있어 환경과 인체에 해이다. 이에 따라 내열성이 있고 가격적으로 저렴한 Mg2Si과 같은 규화물과 산화물계 열전재료의 개발이 유망시되고 있다.

하이브리드 에너지 하베스팅 기술은 저차원 나노소재들을 기반으로 하여 태양광, 열전, 그리고 압전 발전기술들을 각각 개발하고 이들의 하이브리드화를 통하여 에너지 효율을 극대화시키는 것을 목표로 연구되고 있다. 현재 몇몇 연구기관에서 태양광과 열전, 열전과 압전 형태로 결합된 형태의 발전시스템을 개발하여 보고하고 있으며 지속적으로 연구되어질 전망이다.
<그림 2-29> 태양광, 압전, 열전 하이브리드 발전 소자의 개념도
제 3 장 열전발전소자의 활용분야

제1절 자동차

현재 자동차 연료는 냉각에 29%, 기계적 작동에 38%가 사용되고 33%가 폐열로 낭비되고 있는데, 열전발전을 통해 유용한 전기로 변환시킬 수 있다. GM, 포드, 크라이슬러 등 자동차 제조업체들은 대학 및 연구소와 공동으로 폐열을 회수하는 열전발전을 이용해 자동차 연료효율을 높이는 데 주력하고 있다. 47)

<그림 3-1> 자동차 연료의 효율

자동차 배기열 회수 발전을 위한 열전재료 및 TEG(Thermoelectric Generator) 개발은 미국의 GM, Ford, Caterpillar, Visteon, BSST 등과 독일의 BMW, VW, 일본의 Toyota 등에서 연구진행 하고 있다. 한국의

47) 한국전자통신연구원, 열전소자의 적용동향, 2015
48) http://nextbigfuture.com/
현대자동차도 몇 년 전부터 과제로 진행하고 있다.

유럽은 EU 주도로 경차에 배기열회수 전기 재생시스템을 적용하여 연비향상용 HeatReCar Project\(^{49}\)를 추진 중이며 Siemens, ROM Innovation, Bosch, Valeo 등에서 alternator의 부하경감 또는 하이브리드차의 구동 지원용 full load시 3 kW, partial load시 1～2 kW TEG를 개발하고 있다.\(^{50}\)

GM은 머플러에 열전재료를 입혀 폐열을 전기로 바꿔 다시 엔진의 보조전력으로 사용하거나 차량시트 냉난방 등에 활용하는 기술을 개발하고 있다. 또 GM 연구진들은 코발트, 아세나이드, 니켈, 철 등으로 구성된 skutterudite라는 열전소자용으로 폐열로부터 최적화된 방법으로 전기를 얻는 것 이다.

현재 GM은 공랭식 121 W급, 수냉식 290 W급, 복합형 600 W급 TEG를 개발하였으며, 출력향상을 위한 중고온용 TEG와의 cascaded TEG 및 시스템 설계연구를 진행 중이다.

\(^{50}\) 공업화학전망, 열전 에너지 변환기술, 2013
BSST(BSST-AMERIGON-Gentherm)는 기존의 BiTe계 열전재료를 이용하여 열전모듈 구조 및 열전발전기 형태에 대한 다양한 시도를 통해 적절한 모듈 및 TEG 형태를 개발하였다. 6기통 3000cc의 BMW 530i 모
델에 1 kW급 TEG 시스템을 직접 적용하는 것을 목표로 고효율 열전재료 및 모듈 제작방법에 대한 연구를 진행하였다.

초기에는 평면형태의 열전발전기를 개발하였으나, 최종적으로는 실린더형의 열전발전기를 개발하여 Lincoln MKT에 장착하여 Road Test까지 완료하였다. 설계된 열전발전기는 700W정도의 전력을 생산했으며, 실험시험에서는 600W 정도의 전력을 생산하였다고 보고하였다. 특별히 Phase 5에서는 고하중 조건이 주어졌을 때 Bypass를 통해 열이 빠져나가도록 하여 열전발전기의 과열을 방지하도록 하였다.
미국의 Hi-Z Technology는 BiTe계 열전재료로 구성한 Hybrid SUV용 180 W급 TEG, GM Sierra Pickup 트럭용 330 W급 TEG 및 대형 트럭용 1kW급 TEG를 제작하여 2004년 실험적용시험을 통해 중저온용 TEG의 자동차 응용 가능성을 검토한 바 있다.

독일의 BMW사 및 Benz사에서도 자동차 배기구를 통하여 방출되는 열을 열전소자를 이용하여 다시 재활용하는 연구가 심도 깊게 연구되
고 있다. 이는 자동차 배기부인 exhauster에 열전소자를 배치함으로써, 자동차 엔진 효율에는 아무런 간섭 없이 전기에너지를 충전함으로써 약 10% 이상의 연료 절감 효과를 얻을 수 있을 것으로 평가하고 있다. 아래의 그림은 디젤 차량 엔진의 EGR(Exhaust Gas Recirculation)과 연동하여 장착한 열전발전기로서 200 ~ 250W의 출력을 얻었다고 보고되었다.

<그림 3-8> EGRu2008coolers generate 200W

열전발전 장치를 현 시점에서 가장 이상적으로 활용할 수 있는 분야가 바로 자동차나 트럭과 같은 내연기관에 사용되는 것이므로, 이는 디젤엔진을 기반으로 하는 기차나 선박에서도 활용 가능하다. 51)

51) 녹색기술센터, 에너지 하베스팅, 나노 기술을 만나다, 2015
자동차에 열전발전기를 장착하려면 몇 가지 고려해야할 사항이 있다.

첫 번째로 열전발전 장치를 가벼운 형태로 개발하는 것이다. 이를 위해 독일에서는 현재 실리콘 기반의 마그네슘 실리사이드나 코발트·안티몬 기반의 소재 개발에 집중하고 있다.

두 번째로는 중고온 영역의 열전모듈을 개발하는 것이다. 자동차 배기가스 온도는 400∼600 ℃이며, 엔진의 실린더 부분이나 머플러 부분에 TEG 시스템을 적용하는 경우, 자동차 총에너지 중 3.3%의 회수가 가능(변환효율 10% 가정)하다. 중고온용 열전재료로서는 skutterudite 계와 silicide 계 재료가 주목받고 있으며 이를 이용한 연구들도 진행되고 있다.

세 번째로는 Cascade 타입의 모듈을 개발하는 것이다. 이는 다수의 열전모듈을 Stacking 하여 열전발전기의 효율을 높이는 기술로 Stacking 기술의 최적화를 통해 발전기의 효율을 최대로 끌어올리는 연구가 필수적이다.

TEG 시스템은 차종에 따라 각기 최적화된 형태를 따게 되는데 핵심은 폐열을 발전에 이용하는 효율을 높이기 위한 구조적 열유동 및 전달의 최적화를 기본으로 하고 있으며 이 기술은 열전모듈의 설계에도 영향을 미친다. 열전 발전모듈을 통해 발생한 전력은 태양전지와 같이 적정의 부하상태에서 최대의 출력을 생산하게 될 뿐만 아니라 차량의 운행조건에 의존하는 배기열 발생 상태에 따라 수시로 전기출력이 변
화하기 때문에 적절한 전력매칭과 제어 및 축전기술도 개발되어야 한다.

아래 표는 TEG 적용에 따른 차량별 고려사항, 장착조건 및 장단점을 정리한 것이다. 연료가 가솔린, 디젤 및 전기자동차와의 하이브리드도 고려해야 하며, 승용차, SUV 및 대형트럭에 장착할 경우 장단점도 비교해야 한다. 자동차 배·폐열로 부터 발생되는 최종 전기에너지의 출력을 위해서는 가장 근본적인 열전 발전모듈의 확보와 함께 모듈의 최적 스택화, 생산전력의 최적화, 열원 이용률 향상, 온도차 확보, 내구성 확보, 성능평가 기술들과 같은 시스템화 기술이 총체적으로 요구된다. 52)

52) 공업화학전망, 열전 에너지 변환기술, 2013
최근 국내에서도 열전발전 시스템을 자동차 응용하는 과제를 기획하여 진행하고 있다. 세종공업에서는 수원대와 자동차부품연구소 등과 공동으로 2012년 8월부터 2016년 07월까지 “차량 배기계 폐열발전을 위한 열전발전시스템 기초기술개발” 과제를 진행 중이다. 또한 정관(주)와 함께 ‘나노기반 열전소자 제조기술’을 연구하고 있다. 이는 폐열에서 얻어진 전기로 베타리 충전하고 그 전기를 이용함으로 엔진의 구동 외 에너지 사용을 최소화함으로써 연비 개선하는 것을 목적으로 와 있다.
<그림 3-9> 현대자동차 열전발전관련 자료
제2절 우주항공

열전변환모듈은 구성이 단순하고 가동부문이 없기 때문에 높은 신뢰성이 기대되지만 출력밀도 및 에너지 변환 효율이 낮아, 초기에는 우주용 등 낮은 출력의 특수 용도로 제한되었다.

미국에너지부는 1956년부터 인공위성용 전원으로 사용할 목적으로 SNAP(System for Nuclear Auxiliary Power) 계획을 추진하여 방사성동위원소 또는 소형원자로를 열원으로 하는 열전 발전기를 개발하여 왔다. 1959년 제작이 완료된 SNAP-3은 세계에서 최초로 방사성동위원소를 열원으로 하는 열전발전기로서 1961년 개량형인 SNAP-3B7이 미 해군의 항해용 위성인 Transit 4A에 탑재되어 성공적으로 발사된 바 있다. 그 이후에도 미국에서는 약 20년간 방사성동위원소를 열원으로 하는 18종류의 열전 발전기를 개발하여 각종 목적의 인공위성용 전원으로 사용하였다. 53) 그 중에서 미국의 혹성탐사위성에 채택된 열전발전시스템은 약 반세기의 사용 실적이 있으며 보이저(Voyager, 1977년)나 갈릴레오(Galileo, 1989년) 등의 우주선에서 높은 신뢰성이 실증되었다.

53) 정보통신산업진흥원, 열전소자기술, 2012
NASA의 방사성 동위원소 열전 발전기(RTGs: Radioisotope Thermoelectric Generator)는 플루토늄(Pu-238)을 연료로 하여 방사성 동위원소의 붕괴열 열원주위에 SiGe 또는 PbTe 모듈을 설치하고 태양 복사를 통해 이를 가열, 라디에이터(radiator)에서 방열하는 방식으로 수백 W 정도의 출력을 얻는다. 킬로와트(kW) 수준의 큰 출력을 얻기 위해 다중 SiGe 모듈을 사용하고 가열송풍관(약1,050°C)과 냉각송풍관(약 550°C)을 좁힌 구조를 하고 있으며 모듈에는 열전달과 열응력 완화를 위한 베드(compliant bed)가 채택되었다.

SP-100은 1990년 후반에 발사될 예정으로 거의 완성단계에 있었지만 동서냉전의 종결에 따라 1993년에 중지되었으며 베드 부착 SiGe모듈의 기술도 소멸되었다. 54)

54) KISTI, 진공 밀봉 열전변환모듈의 기술현황, 2013
우주항공용 열전발전 시스템의 종류

<table>
<thead>
<tr>
<th>분류</th>
<th>열원</th>
<th>열전재료</th>
<th>출력</th>
<th>효율</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>방사성 동위원소 열전발전기 (RTG)</td>
<td>90Sr</td>
<td>P형: TAGS, n형: Pb–Te</td>
<td>500W, 28V, 18A</td>
<td>9%</td>
<td>군용전원, 헬기전송가능</td>
</tr>
<tr>
<td></td>
<td>238Pu</td>
<td>P형: (Cu,Ag)2Se / (Bi,Sb)2Te3, n형: Gd2Se3/PbTe</td>
<td>280W, 18V, 10A</td>
<td>10.4%</td>
<td>목성탐사선, 단위출력: 7.5W/kg</td>
</tr>
</tbody>
</table>
제3절 에너지

폐·배열 에너지의 재활용 및 친환경 냉각에 부응할 수 있는 유력한 기술 중의 하나가 열전 변환 기술이다. 열전발전은 다양한 에너지 수도 증가에 따른 새로운 에너지자원의 확보 방안으로서 폐·배열 에너지의 재활용과 함께 기존 발전시스템과의 복합화가 시도되고 있으며, 이를 통하여 에너지 확보와 환경문제를 동시에 해결할 수 있는 방안의 하나로 고효율 열전반도체를 이용한 발전이 기대를 모으고 있다.

원자력발전, 화력발전으로 전기를 생산할 때는 핵분열, 화석연료로 물을 끓여 아주 높은 온도의 수증기를 만들어 발전기 터빈을 회전시켜 전기를 생산한다. 터빈을 회전시킨 뒤의 수증기는 약 300~500℃까지 온도가 떨어지는데, 다시 터빈을 회전시킬 충분한 에너지를 가지고 있지 않아 냉각 후 배출한다. 열전발전은 이렇게 버려지는 에너지를 재활용하여 전기를 생산한다. 즉, 300~500℃의 수증기와 주변 냉각수의 온도 차이를 이용해 발전하는 것이다. 55)

소형소각로의 폐기물 소각열은 열전발전의 열원으로 가장 현실적 가능성이 있는 열원의 하나로서 고려되고 있다. 현재는 소각열의 약 40% 정도가 회수되고 있으며, 일부 대형 소각장을 제외하고는 발생되는 에너지를 거의 버리고 있는 실정이므로 이를 활용한 열전 발전시스템의 유망할 것으로 기대된다. 56)

55) 한국전기연구원, 탄소나노소재의-Wonderland, 2015
56) 재료연구소, 열전소재의 개발 동향 및 응용, 2013
<table>
<thead>
<tr>
<th>분류</th>
<th>열원</th>
<th>열전재료</th>
<th>출력</th>
<th>효율</th>
<th>용도</th>
</tr>
</thead>
<tbody>
<tr>
<td>원자로 열전발전</td>
<td>235U</td>
<td>SiGe(Gap) 기타</td>
<td>수 kW ~</td>
<td>1 ~ 5%</td>
<td></td>
</tr>
<tr>
<td>폐열이용</td>
<td>SiGe(GaP), FeSi₂(비정질), FeSi₂(소결), 저온폐열 (Bi-Te계, Pb-Te계)</td>
<td>10kW급</td>
<td>10-20%</td>
<td>폐배열재생</td>
<td></td>
</tr>
<tr>
<td>연소가스</td>
<td>FeSi₂(소결)</td>
<td>6V, 0.1A</td>
<td></td>
<td></td>
<td>Gas Fan heater</td>
</tr>
<tr>
<td>화석연료 열전발전</td>
<td>diesel 연소기</td>
<td>SiGe(Gap) 소결체</td>
<td>200W 28V, 7A</td>
<td>9%</td>
<td>군용전원 경량(37kg) /장수명</td>
</tr>
</tbody>
</table>
제4절 기타

1. 무선 센서 네트워크분야

무선 센서 네트워크는 이미 에너지 하베스팅 기술을 채택하고 있다. 프로세스 산업계에서 시스템 인테그레이터는 에너지 하베스팅으로 동력을 지원받는 무선 센서를 그들의 제품 포트폴리오에 추가하고 있다. 그 이유는 배터리를 교환할 필요가 없다는 장점 때문에 무선 기능의 요구가 커지고 있기 때문이다.

예를 들면, 내부 연소 엔진에 직접 장착하거나 천연가스 압축 패키지 등에 사용하여 엔진 및 주위 공기 사이의 온도차를 이용하여 전력을 생산하는 작은 센서 노드 로기모트(Logimote)와 같은 것이다.

![Logimesh's Logimote](http://www.energyharvestingjournal.com/articles/5524/applications-for-thermoelectric-energy-harvesters)

또 다른 예는 2013년 ABB 사에 의해서 출시된 WiTemp로, 열전 에너지 하베스팅 기술에 의해 출력되는 산업 공정 응용을 위한 무선 온도
전송기이다. 이 디바이스는 완전히 통합된 열전 발전기이며 전력 관리 특징을 가지고 있을 뿐만 아니라 표면 장착이 가능하다. 그것은 전체 디바이스에 출력을 제공하기 위해 고유 프로세스 열을 사용한다. 데이터 송신을 위해서, 이 디바이스는 무선 HART 7 통신 프로토콜(2.4 GHz)을 사용하여 안전한 데이터 송신을 제공한다.

![ABB's WiTemp wireless temperature transmitter](image)

이 제품은 전선 연결이 없이 특정한 점에서 내부 열 온도를 측정하여 에너지 하베스팅 기술에 의해 공급된 전력을 이용하여 그 측정값을 전송한다. 이 장치는 열전 발생기로부터 100% 전력을 공급받을 수 있도록 충분히 높은 공정 온도가 요구되는 곳에 설치하여 반영구적으로 사용할 수 있다. 58)

키백 앤 피터(Kieback & Peter)사는 라디에이터 온도 제어를 위해 열 전기술로 전원을 공급받는 액추에이터 라디에이터 밸브를 출시했다. 59)

58) KISTI 미리안, 열전 에너지 하베스터 응용, 2013.06.17
59) KISTI 미리안, 열전기술의 부상, 2013.10.03
이 장치는 라디에이터에서 발생하는 열을 이용하여 전력을 생산하고 이를 밸브 작동에 사용한다.

말로우(Marlow) 인더스트리에서는 열원으로 얻은 열을 이용하여 전력을 생산하고 이를 전력을 무선 센서에 제공하는 EverGen TEG를 개발하여 상용화 하였다. 이것은 특허 출원되었으며 전통적인 플레이트 교환기 기술의 확장성과 소형화를 가능하게 하였다.

\[\text{그림 3-13} \] Kieback & Peter’s Valve 와 Marlow's EverGen TEG

2. 소비재 분야

소비재 분야로는 요리센서(Thermo-powered cooking sensor), 휴대전화(Powering mobile phone), 손목시계, 인공심장박동기와 체온감지기 등의 전원으로 쓰일 수 있다.

인공 심장박동기를 예로 들어 보면, 인공 심장박동기의 전원으로는 일반적으로 소형전지가 사용되어 왔으나 전지 수명이 짧기 때문에 자주 교환해야 하는 불편이 있다. 이러한 경우에 체온 등을 열원으로 하
는 열전 발전기를 사용하면 장시간 연속 사용이 가능하다. 60) 1970년대에 방사성 동위원소를 사용한 열전발전 심장박동기가 상용화 되었으나 리튬이온 배터리가 발명되면서 현재는 10~15년 주기로 심장박동기와 함께 배터리를 교환해 주는 방식으로 바뀌었다.

<그림 3-14> Plutonium Powered Pacemaker (1974)

최근에 Biophan사에서 심장박동기를 위한 bismuth–telluride 반도체 기반의 열전발전기를 개발하였다. 이들의 목표는 현재 사용되고 있는 리튬–이온 배터리의 크기와 동일한 1in2 소자에서 100 μW, 4 V를 발전하는 것이다.

영국의 통신업체 보다폰(Vodafone)은 침낭 안에 들어갔을 때 체온과 침낭의 온도차에 따라 열전 소자가 삽입된 침낭 원단에 전기가 발생하면서 휴대폰 충전을 가능하게 하는 침낭을 개발했다. 이 침낭은 11시간 정도의 충전시간이면 휴대폰을 충전할 수 있다. 61)

60) 정보통신산업진흥원, 열전소자기술, 2012
Micropelt사는 Schneider Electric과 함께 TE-qNODE를 개발하였다. TE-qNODE는 무선 온도센서로서 모니터링하는 장치에서 발생하는 저항열로부터 전력을 생산한다. 또한 Cooking sensor를 MSX technology와 함께 조리기구에 고정되어 사용하는 제품을 개발하여 출시하였다. 이는 내부와 외부의 약 4k 온도차에 의해 12 mm² 면적에서 0.3 V의 전력을 생산한다. 62)

Powerpractical사는 캠핑용 냄비와 열전발전소자를 결합하여 휴대폰 또는 USB 장치를 충전할 수 있는 제품을 출시하였다. 사용법은 매우 간단한데 PowerPot에 물을 부은 상태에서 열을 가하면 몇 초 후부터 충전이 되기 시작한다. 이는 냄비의 바닥면 내부에 열전발전소자를 삽입하여 다양한 열원으로부터 전력을 생산할 수 있도록 한 것이다. 63)
제 4 장 Hermetic Packaging 및 Glass to metal Sealing(GTMS)

화석에너지원의 비용 증가로 신재생에너지의 원가 경쟁력이 높아지고 있으며, 폐열에너지를 이용한 발전기술 역시 대안 중 하나로 재무상함에 따라, 기존 특수목적으로만 활용되어 오던 열전 발전소자를 이용한 개발이 활발히 이루어지고 있다.

2000년 대 이후 나노기술의 출현과 신소재·공정기술의 개발 및 기술상용화에 대한 기대로 용도·열원별로 기초·원천연구 부터 용용·상용화 연구가 동시에 진행되고 있는 가운데 열전 발전소자의 효율을 극대화시키기 위한 방안 중 하나로서 모듈화에 필수적으로 요구되는 패키징 기술의 중요성이 점차 중대되고 있다.

따라서 일반적으로 열전발전에 요구되는 요소기술인 온도별 구조 제어 기술 및 열전 소재기술, 각 단위 열전 소자의 집적화 및 에너지 손실을 최소화하기 위한 모듈화 기술, 열원에 따라 열전 모듈을 최적화하는 시스템화 기술 중 모듈화 공정 가운데 패키징 공정으로 특정하여 관련 기술 전반을 파악해보고자 한다.
제1절 Packaging 기술 및 발전 동향

소자 Packaging 기술은 능동소자(반도체 칩)와 수동소자(저항, 콘덴서 등)로 이루어진 전자 하드웨어 시스템에 관련된 기술을 통칭하는 매우 광범위한 기술이다. Packaging 기술의 중요한 기능과 이에 따른 핵심 기술은 전력공급/신호연결/열 방출/외부로부터 보호와 같이 크게 4가지에 따라 구분된다.

그림 4-1 Packaging 기술의 주요 기능

패키지의 구조 및 설계는 기계적 안정성, 전기적 속도와 안정성, 열 방출 능력, 신뢰성 등의 성능 요구특성을 만족해야 한다. 특히 성능은 전기적인 특성을 나타내는 것으로서 통상 컴퓨터의 CPU와 같은 경우 그 성능은 MIPS (Million Instruction Per Second)의 개념으로 나타내며 이는 cycle time과 cycles per instruction에 반비례한다.

이중 cycle time의 경우 반도체와 패키지의 지연(delay)에 의해 결정
된다. 그러므로 칩과 칩 사이의 연결에서 발생하는 패키지 신호지연을 줄이기 위해 회로의 집적도를 높이거나, 접속 길이를 낮추거나, 패키지 재료를 개선하여 패키지의 성능을 높여야 한다.

패키지의 크기를 줄여 패키지 효율(칩 면적/패키지 면적)을 높이는 것은 패키지의 소형화와 성능에 큰 영향을 미친다. 특히 패키지 크기는 전자제품의 크기를 결정함으로 패키지의 소형화는 매우 중요한 고려사항이다. 패키지 크기를 줄이기 위해 4면 주변형(peripheral)에서 격자형(area array) 접속을 이용하거나 리드의 피치를 줄이고 있으나 이는 취급의 어려움과 생산성 저하를 가져 올 수 있다. 최근 CSP 또는 플립칩 패키지 등은 이와 같은 이유로 개발된 극소형 패키지이다.

패키지의 선택에 있어서 가장 중요한 요인은 성숙한 생산기술이 있는가 하는 점이다. 저가의 생산기술은 패키지의 경쟁력을 결정한다. 가격 경쟁력이 있는 패키지의 설계, 재료, 공정과 계속적인 생산성 향상이 매우 중요하다.

그 외 중요한 요소인 시스템의 신뢰성은 각 부품의 결합 발생률에 의해 결정된다. 패키지의 신뢰성은 열, 전기적 신뢰성으로 결정된다. 예로 반도체 junction 온도가 매 10℃ 증가함에 따라 소자의 수명이 10% 감소하며, 약 2%의 스위칭 지연이 발생한다. 또한 junction 온도는 115℃ 이하로 유지하는 것이 중요하다.

Emission Coupled Logic(ECL)과 같은 소자는 약 50W의 열을 방출하며, 향후 이 같은 소자에 대한 열 설계와 재료 선택을 통해 신뢰성을
높여야 한다. 또한 패키지의 신뢰성은 전기적인 신뢰성, 즉 잡음 (noise), 신호 안정성, cross-talk, switching 잡음에 의해 결정되는 것으로서 잡음을 줄이기 위한 신호와 접지 면을 분리함으로써 microstrip transmission 구조를 설계하거나 적절한 재료 선별 등이 패키지의 전기 적 신뢰성 향상에 중요하다.

<그림 4-2> Packaging 기술의 발전동향
제2절 Packaging 기술 동향

발전 소자가 모듈화를 이루어 효율의 증대를 이루기 위해서는 소자가 작아지고 얇아지는 것은 에너지 손실을 최소화하기 위한 특성도 고려되어야 한다. 실제 각종 소자에 적용되는 소자 패키징 기술은 빠른 전기적 성능과 저전력 구동, 전자파를 차폐하는 것 등이 요구되고 있다. 기본적으로 소자를 구현하는 기술이 패키지 기술이므로 패키지 기술 및 종류 등 전반적인 것을 우선 살펴본다.

전체 크기를 줄이기 위해 여러 개의 칩을 PCB 위에 설장한 후 한번에 패키징하는 SIP(System In Package)와 패키지를 적층하는 POP (Package On Package), WLCSP(Wafer Level Chip Scale Package)이 사용된다. 완성 부품의 두께를 줄이기 위해 여러 개의 칩을 적층한 후 패키징하는 MCP(Multi Chip Package)가 주로 사용되고 있으며, 향후에는 처리속도를 높이기 위해 칩을 적층한 후 곧바로 Via를 통해 연결하는 TSV(Through Silicon Via) 기술이 적용될 것으로 예상되고 있다.

모바일 기기에 사용되는 반도체 부품은 처리속도가 빠르면서도 저렴한 QFN(Quad Flat No-lead), 속도가 빠르고 저렴하면서도 작게 제작할 수 있는 WLCSP, 와이어 대신 솔더 볼을 이용해 칩을 PCB에 곧바로 연결시키는 플립 칩(Flip Chip), POP, MCP가 주로 사용이 되고 있다.

1. QFN (Quad Flat No lead)

반도체 부품을 구현하는 다양한 패키지에 대해 소개하면 다음과 같
다. QFN은 구리 리드프레임 위에 칩을 올리고 와이어 본딩을 한 후 몰딩을 한 형태로 리드가 없어서 작고 가벼우며 전기적 성능과 열적 특성이 우수하고 신뢰성이 좋다. QFN은 반도체 패키지 중 가장 저렴하면서도 지속적으로 사용되는 패키지이다.

2. TSOP (Thin Small Outline Package)

PC에 사용되는 메모리 패키지로 리드프레임을 사용하는 가장 일반적으로 사용되는 TSOP는 리드프레임 위에 칩을 올리고 와이어 본딩, 몰딩을 한 후 리드를 구부려 완성한다. DRAM, SRAM, Flash 메모리 패키지로 주로 사용된다. 패키지 두께가 1mm이고, 리드 간 피치가 0.5mm이다.

<table>
<thead>
<tr>
<th>QFN (Quad Flat No lead)</th>
<th>TSOP (Thin Small Outline Package)</th>
</tr>
</thead>
</table>

<그림 4-3> QFN 와 TSOP 모식도
3. BOC (Board on Chip)

PC와 노트북에서 리드프레임이 아닌 PCB형태의 메모리 패키지로 사용되는 BOC(Board on Chip)는 기판에 메모리칩의 본딩면이 부착되며, 칩의 본딩패드와 기판의 본딩패드를 기판의 중앙에 형성된 슬롯을 통해 와이어 본딩으로 연결하는 구조로 이루어져 있다. 와이어 본딩이 슬롯을 통해 이루어지므로 전체 크기를 TSOP에 비해 작고 얇으며, 고속화가 가능한 장점을 가지고 있다.

4. MCP (Multi-Chip Package)

MCP는 박판의 기판위에 50~80um의 얇은 핀을 여려 개 적층하여 용량과 성능을 증가시킨 구조로 모바일 기기에 사용되는 메모리에 사용된다. 패키지 형태로는 FBGA(Fine Pitch Ball Grid Array)이다. 이와 같은 패키지를 구현하기 위해서는 웨이퍼를 얇게 하는 기술, 얇은 핀을 적층하고 와이어 본딩하는 기술이 필요하다.

메모리 소자는 칩을 2층 쌓는 DDP (Double Die Packaging), 3층 쌓는 TDP (Triple Die Packaging), 4층 쌓는 QDP (Quad Die Packaging)가 사용되고 있으며, 최근에는 소자 안에 컨트롤러를 내장한 eMMC (embedded Multi Media Card), eMCP (embedded Multi Chip Package)가 모바일 기기용 메모리 소자로 사용되는 추세이다.

첫번째로, MCP용 핵심 package 공정 기술을 살펴보면, 박형 패키지 구현을 위해서는 얇은 PCB 기판위에 MCP형태로 메모리 칩을 적층한
후 얇게 몰딩하는 기술이 필요하다. Chip 두께를 얇게 back-grinding해야 하는데, 50um 두께까지는 일반 mechanical grinding과 polishing으로 진행하고, 50um 이하의 두께는 DBG (Dicing before Grinding) 공정 방식을 도입해야 한다. DBG 공정은 백 그레인딩을 하기 전에 wafer saw하고, tape를 마운팅하여 chip을 얇게 백 그레인딩 할 때 발생하는 칩 움현상 (chip warpage)을 방지할 수 있다.

그리고 50um 이하의 얇은 칩을 saw하기 위해서는 laser를 이용하여 칩에 손상이 없도록 최적화해야 한다. 또한 얇은 칩을 웨이퍼 마운트 테이프에서 떼어 PCB에 붙이는 기술 필요하다면 이를 위해 pin을 사용하지 않는 특별한 kit 개발이 필요하다.

Chip 두께를 얇게 back grinding해야 하는데, 50um 두께까지는 일반 mechanical grinding과 polishing으로 진행하고, 50um 이하의 두께는 DBG (Dicing before Grinding) 공정 방식을 도입해야 한다. DBG 공정은 백 그레인딩을 하기 전에 wafer saw하고, tape를 마운팅하여 chip을 얇게 백 그레인딩 할 때 발생하는 칩 움현상 (chip warpage)을 방지할 수 있다.

이후 wire bonding 공정에서는 두께가 얇아져서 와이어 본드 하기 어려운 협소한 공간에 매우 낮은 높이로 와이어 본딩을 진행하여 칩에 손상이 없도록 해야 한다.
5. 플립칩 (Flip Chip)

플립칩은 칩 위의 페드와 PCB, 또는 리드프레임을 연결하는 방법으로 와이어본딩 대신에 칩의 본당패드 위치와 동일하게 기판에 범핑패드를 만들어 솔더볼을 이용해 연결한 패키지 형태이다. 와이어본딩을 했을 때 보다 전기적 특성이 좋고, 와이어 본딩 투프의 높이가 없어 좁은 면적으로 칩 실장밀도를 높일 수 있다. Flip Chip 방식은 전체 표면을 전기적 연결 통로로 사용할 수 있어 입출력 단자의 수를 늘릴 수 있는 장점을 가지고 있다. DRAM 등의 메모리 소자와 플래시 메모리의 패키지로 사용된다.

6. SiP (System in Package)

SiP는 기판위에 서로 다른 기능의 능동소자들을 올린 후에 하나의 패키지로 묶어서 소자 간 접속 경로의 단거리 확보를 통한 고성능과
우수한 전기적 특성을 확보할 수 있는 패키지 형태이다. SiP는 와이어 본딩과 플립칩 범프의 복합기술로 집의 수직적층과 다른 기능의 칩을 병렬로 배열하여 초경량, 초소형의 반도체 기능을 확보하는 것이 가능하다.

<table>
<thead>
<tr>
<th>플립칩 (Flip Chip)</th>
<th>SiP (System in Package)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<그림 4-5> 플립칩과 SiP 모식도

7. WLCSP (Wafer Level Chip Scale Package)

WLCSP는 가장 작은 크기를 구현할 수 있는 칩 크기의 패키지로 전기적 특성이 좋고 저렴하게 생산할 수 있는 장점이 있다. 스마트폰에 들어가는 많은 소자가 WLCSP (Wafer Level Chip Scale Package) 형태로 제작되어 소형이면서도 빠른 스피드를 구현하는 방향으로 개발이 제작되고 있다.

8. POP (Package On Package)

스마트폰 및 태블릿 PC에서는 수직적 확장으로 3차원 패키지를 구현하기 위해 AP(Application process), 베이스밴드 칩과 메모리를 적층하
는 POP 형태를 사용하여 부품 크기를 최소화하고 신호 전달이 빠르게 이루어질 수 있도록 하고 있다. POP는 연결배선의 길이를 최소화 할 수 있어, 이차원 배열식 발생하는 신호 지연, 임피던스 부정합 등의 손 실을 최소화 할 수 있고, 공간적으로 수직 방향을 활용하므로 단위 면 적당 실장 면적을 극대화 하여 대용량, 초소형 부품을 구현할 수 있다.

기존에는 로직 기능을 하는 패키지와 메모리 패키지를 평면에 2차원 적으로 배치하여, 보드의 공간을 많이 차지하고, 한 가지 패키지 사양 이 변경되면 보드를 새로 제작해야 하므로 추가 비용이 필요하다. 반면에 로직과 메모리 소자를 하나의 패키지로 제작하면, 둘 중 하나가 바뀌면 전체 테스트 프로그램과 테스트보드를 수정해야 하므로 시간과 비용이 많이 들었다.

POP는 로직 패키지와 메모리 패키지를 각각 테스트 한 후 패키지를 적층하므로 변동 발생시 해당 패키지의 테스트 도구만 변경하면 되므로 시간과 비용을 획기적으로 줄일 수가 있는 장점이 있어 제작을 용이하게 하고 소자의 성능과 집적도를 향상시키는 효율적인 방법이 되고 있다.
WLCSP (Wafer Level Chip Scale Package) | POP (Package On Package)

| [Image of WLCSP] | [Image of POP] |

<그림 4-6> WLCSP 와 POP 모식도

9. 팬 아웃 웨이퍼 레벨 패키지(Fan-Out Wafer Level Package, Fan-Out WLP)

일반적인 WLP(Wafer Level Package)는 패키지 I/O 단자를 모두 칩 안쪽에 배치시켜야 하므로 칩 사이즈가 작아지면 볼 크기와 피치를 줄여야 하므로 표준화된 볼 레이아웃을 사용할 수 없다.

이러한 문제를 해결하기 위해 칩 바깥쪽에 패키지 I/O 단자를 배치하는 형태인 팬 아웃 웨이퍼 레벨 패키지(Fan-Out Wafer Level Package, Fan-Out WLP)가 제안되고 있는데, 이 경우 칩 크기가 작아지더라도 표준화된 볼 레이아웃을 그대로 사용할 수 있는 장점이 있다. Fan-out WLP는 패키지 공정이 간단하고 두께를 얇게 구현할 수 있어서 BGA보다 소형화와 박형화가 가능하고 열특성과 전기적특성이 우수하여 모바일 제품에 적합하다.
소형, 박형의 장점이 있는 팬 아웃 WLP는 초기 I/O 150~250 pin의 IC를 시작으로 점차 300pin 이상의 IC로 확대 될 것으로 예상되며, 적용 소자도 베이스밴드와 아날로그 IC, RF소자에 채용되기 시작하여 AP와 PMU(Power Management Unit)에 확대 적용될 예정이다. Fanout WLP는 PCB를 이용하는 일반적인 POP보다 더 컴팩트하게 구현할 수 있으며 POP의 휘 현상 발생으로 인한 문제를 극복할 수 있다.

10. TSV (Through Silicon Via)

반도체 소자의 집적도를 높이는 방법으로 칩들을 적층하여 와이어 분당하는 MCP와 패키지를 적층하는 POP가 일반적으로 사용되지만 최 근 처리속도를 높이기 위한 방법으로 두 개 이상의 칩을 수직으로 적 층하고 실리콘을 관통하는 전극 통하여 회로를 연결하는 TSV 기술이 적용되기 시작하고 있다.

TSV는 실리콘 웨이퍼의 상하를 전극으로 연결하여 최단거리의 신호 전송경로를 제공하므로 패키지의 경박 단소화에 가장 유리하다. TSV기술은 CMOS 이미지 센서에 적용되고 있으며, CPU 위에 TSV 와이드 I/O로 메모리를 연결하는 제품, 캐시 메모리로 고속 메모리를 올리는 제품, 휴대전화에 들어가는 베이스밴드 프로세서 위에 TSV로 메모리를 올리는 제품, RF를 포함한 무선 칩에 TSV를 적용하여 전원과 그라운 드를 연결해서 고주파 성능을 향상시키는 제품, 플리케이션과 베이스밴드 프로세서를 TSV 인터포저를 이용해 모듈화하는 부품 개발 등이 진행되고 있다.
TSV기술이 양산 제품에 적용되기 위해서는 여러 가지 문제를 해결해야 하는데 열관리, 비어 형성, 박형 웨이퍼 취급 외에도 설계 및 공정 파라미터 최적화, 본딩 환경, W2W 본딩 정렬, 웨이퍼 뒤집림, 웨이퍼 흐름, 검사, 결합 신뢰성, 제조 수율 확보 등이 문제가 되고 있다.

<table>
<thead>
<tr>
<th>Fan-Out WLP</th>
<th>TSV (Through Silicon Via)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<그림 4-7> Fan-Out WLP 와 TSV 모식도

11. 인터포저 (Interposer)

CPU와 메모리칩의 소자의 고밀도와 회로의 복잡성 때문에 크기나 권수가 다른 CPU와 메모리칩을 부착시키기 위해서는 설계의 자유도나 성능에 제약이 있을 수 있다. 인터포저는 서로 다른 피치, 크기, 위치의 패드를 가진 다양한 칩간에 전기적 연결을 제공하는 매체로 실리콘, 글라스 등이 사용되며 면적과 크기가 작고, 고성능, 저비용을 실현할 수 있다.
12. 유연 패키지 기술 (Flexible Package)

최근 제품 사양의 편의성을 위해 휘어지거나 접을 수 있는 전자 제품에 대한 요구가 생겨나고 있다. 전자제품이 유연해 지기 위해서는 사용되는 반도체 부품이 유연해야 한다. 실리콘 반도체 소자는 두께가 80μm 이상일 경우는 딱딱한 성질을 가지고 있는 데 그 이하가 되면 유연한 특성을 보이게 된다.

실리콘 소자를 80μm이하로 얇게 한 후 유연한 기판에 접합시키고 소자 간 연결이 되도록 하면 유연한 반도체 소자를 확보할 수 있다. 이러한 과정을 통해 자유자재로 휘어지는 메모리를 만들어 넣을 수 있어서 웨어러블 제품에 적용할 수 있다.

<table>
<thead>
<tr>
<th>인터포저 (Interposer)</th>
<th>유연 패키지 기술 (Flexible Package)</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Interposer Image]</td>
<td>![Flexible Package Image]</td>
</tr>
</tbody>
</table>

<그림 4-8> 인터포저 와 유연 패키지 기술 모식도
제3절 Hermetic Packaging

1. Hermetic Packaging 기술 전반

열전 발전소자로 이루어진 열전 발전모듈의 적응 분야에서 열 또는 습기 등의 불리한 영향으로부터 막아져야 할 필요성이 있어, 이를 위해 Hermetic Packaging이 적합한 방법으로 적용되고 있다. Hermetic Packaging의 다양한 적응 분야에 있어 요구되는 열적/전기적 특성을 충족시키기 위해 다양한 형태의 설계가 존재한다. Hermetic Packaging의 주된 특징은 세라믹 또는 금속 Lid의 부착을 가능케 하는 Seal ring 또는 다른 Metalized component라고 볼 수 있다.

현재 Packaging의 역할은 실리콘만이 상업적인 반도체 재료로서 사용되어 지던 초기 Microelectronics 개발 시점에 비해 증가되었다. 즉, 회로의 성능 및 효율 향상을 위해서 패키지 설계 및 재료의 영향이 매우 크기 때문에 열전 발전소자 산업의 성장의 기반 원동력이 될 것으로 평가받고 있다. 기본적으로 소자의 성능은 전형적으로 회로 기판 자체 성능 및 Packaging에 의해 좌우된다.
주로 Hermetic Packaging은 반도체와 같은 정밀 부품, RF 패키지, 광전자 장치 및 센서 등의 분야에서 불리한 환경적 조건에 대한 내성을 가지기 위해 Metal package 등의 방법을 통해 밀봉되어 지는 것을 말한다.

Hermetic Sealing Package는 방어를 위한 레이더 및 Anti-레이더 시스템부터 항공 우주용 위성 항법모듈, 자동차용 압력 센서, 전자부품에 적응하기 위한 각종 센서 등 다양한 산업군에서 적용되고 있다. (자동차, 전자 및 태양전지, IT&멀티미디어, 의료, 항공 우주 및 방위 산업) 전형적인 예로는 센서, 레이더 부품, 전지 수납부, 박막 도체 셀, 인슐린 펌프 등이 있다.

앞서 언급한 이러한 소자들은 Welding, Brazing, Soldering의 방법을
통해 밀봉되어 진다. 이런 공정들의 열원은 레이저로부터 나오는 Light 또는 Electrical current이 될 수 있다. 공정을 통해 단면 또는 그 이상의 직선 내지 원형 라인, 또는 한번에 전체 둘레를 감싸거나 중첩되어 진 Spot의 연속된 시리즈로서 밀봉되어질 수 있다. 이러한 기술들은 산업현장에서 Resistance Welding, Projection Welding, Rotary Welding, Seam Sealing, Soldering, Laser Welding으로서 알려져 있으며 구체적 기술을 공정과정에 따라 살펴보고자 한다.

2. Hermetic Packaging 세부 공정

가. Process Steps

Hermetic Packaging의 기본 공정 과정은 다음의 Process steps를 따른다. 이 단계에서, Packaging할 내부의 소자는 지정된 위치에 배치시킨다. 그 뒤 Lid를 배치시키거나, 전 단계에서 미리 Lid를 위치시켜 놓는다. 우선 내부에 Lid와 기본 base가 되는 소자가 지정 위치에 놓이게 되면 Packaging을 하기 위한 내부분위기의 조성이 완료된다.

정확한 내부 환경, 부품들의 정렬 및 배치가 갖추어지면 그 뒤에 비로소 접합이 가능하며 이를 통해 Hermetic한 밀봉이 이루어지게 된다. 이 모든 공정은 Hermetic Packaging 장비들을 통해 이루어지며, 장비를 통해 Out Baking, Atmosphere, Lid handling, Lid placement, Lid alignment와 최종 접합이 가능하다.

나. Heat Sources

열원은 Package의 전기적 저항을 이용하여 Package를 통해 형성되는
Electrical current에 의해 생성되거나 Package에 직접 집중되는 빛에 의해 생성되어 질 수 있으며, 이는 Package의 금속이 빛을 흡수하고 가열되기 때문이다.

전기적 에너지와 전류는 10,000 Joules 또는 50,000 Joules 에 이를 정도로 높게 형성된다. 이것은 각 파트를 통해 DC 또는 AC 전류가 통과함으로써 생성된다. Heating time은 일반적인 경우 Milliseconds 범위로 매우 짧다. 전류는 공급전원을 통해 실시간으로 전달되는 직접 에너지이다.

DC 전류는 정확한 공정을 진행하고 요구되는 전류를 컨트롤하기 위해 사용된다. AC 전류는 상대적으로 긴 10ms 또는 그 이상이 필요한 최소한의 Heating time이 요구되며, 이는 간단한 기술이다. AC 전류는 또한 Large Capacitor에 의해 버퍼링 될 수 있으며 (Capacitor Discharge Resistance Welding), 주로 더 큰 전류가 요구될 시 사용되어 진다.

광 에너지는 일반적으로 레이저에 의해 생성된다. 레이저는 오직 한 가지 파장을 갖고 있는 평행의 빔을 가진다. 그러므로 이 레이저는 작은 사이즈의 Spot에 집중시킬 수 있고 충분한 에너지 밀도가 용용 금속에 도달할 수 있다. 레이저 빔은 밀봉을 하기 위해 Lid 둘레를 따라 이동시켜진다. 레이저는 연속적으로 스위치 온(CW lasers)이 되거나 수 milliseconds 길이의 펄스를 가진 채 작동된다.

레이저의 타입은 Nd-YAG lasers, Pulsed Fiber Lasers (Quasi
Continuous Wave 또는 QCW lasers), Continuous Wave Fiber lasers (CW Fiber lasers)로 구분된다. 파장의 길이는 일반적으로 1060nm~1070nm 이지만 2배의 주파수가 필요한 경우에 YAG 레이저가 유용한 것과 같이 특정 적용 분야에서는 더 짧은 길이의 파장이 사용된다.

다. Joint Types
밀봉을 이루는 것의 핵심인 접합은 한번에 또는 둘레 주위를 진행하며 라인 별로 이루어진다. 이 라인은 연속적인 선이거나 중첩되는 점들로 구성되어진다. 일반적으로 25x25mm에 이르는 정도의 더 작은 Package는 더 큰 Package가 Package 주위를 진행하는 선을 따라 밀봉되는 것에 비해 한번에 접합이 된다. 이 기술은 직경에 대한 최대 한계는 없지만 대부분의 Package는 250x250mm 이하에 적용된다.

Projection welding은 불록한 선을 지닌 접합방법으로, 이러한 불록한 선 또는 Projection은 전기적 에너지를 집중시키기 위해 사용된다. 이를 통해 접합의 질이 향상되고 접합을 만드는데 요구되는 에너지를 감소시킬 수 있다.

용접은 Pure weld(2가지 금속을 용합), Brazing (일반적으로 코팅으로서 표현되기는 a third interposer metal을 녹이는 것), Soldering (melting of a third metal, 최대의 저용융점 300° C를 가짐)로 구분된다.
라. Clamping

Resistance Welding(저항 용접)을 통해 Lid와 Package는 전극을 형성하게 되며, 이 전극은 각 부품을 위치시키고, 부품에 전류를 공급함과 동시에 각 부품을 push하는 역할을 한다. 이 전극은 Lid와 Base를 고정하기 위해 일정한 모양과 공동을 가진다. 또한 이것은 접합을 통해 Wheel로서 구현될 수 있다. 이 공정을 Seam Sealing Electric Welding이라 부른다.

Laser welding(레이저 용접)은 is ‘contact free process’로 각 부품이 외부의 요소와 접합하기 위해 위치를 잡고 조여지는 것을 의미한다. 일반적으로 둘레 주위의 약간의 압정 내지 Spot을 구성하기 위해 레이저를 대신하여 각 부품을 고정한다. 이러한 압정 내지 spot이 만들어진 후 이 공구는 제거되어 지고, Seam이 완전히 만들어지게 된다.

마. Atmosphere inside the Package

이러한 각 Packaging의 atmosphere는 외기나 전용 atmosphere가 될 수 있다. 전형적인 전용 atmosphere에는 아르곤, 질소 또는 누수탐지를 가능하게 하는 스니퍼 가스로서 헬륨과 아르곤이 혼합된 가스 등이 있다.

전용 atmosphere는 Welding 후 또는 Welding이 진행 중인 동안에 결정된다. 가장 일반적인 경우는 용접하기 전 각 부품을 drying/dehydration/curing하기 위해 baking 오븐과 같은 폴 사이즈의 Glove box를 이용하는 것이다. 결합이 되는 동안 각 부품은 차폐 가스로 풀리싱 될 수 있다.
각 부품들은 의도적으로 오픈된 라인 또는 작은 구멍을 통해 유입된 외기 속에서 레이저 용접되어 진다. 이 부품들은 일정 환경적 요인을 갖춘 작은 챔버 안에 놓여진다. 이 과정에서 부품들은 밀봉을 위한 최종 Sealing 과정을 거치게 되고 미리 구멍낸 작은 배출 구멍 또한 최종 용접 과정에서 막아지게 된다.

이러한 공동 내에서의 압력은 일반적으로 통상의 대기압으로 나타나지만 진공에서는 더 낮게, 압력이 가해진 패키지 내에서는 더 높게 나타날 수 있다. 전형적인 밀봉 부재로는 스테인레스 스틸, kovar, 알루미늄 등이 있다.

바. Alignment & Automation

수동 정렬은 부품의 금형 자체 또는 전극에서 수행될 수 있다. 놀동 정렬은 카메라 시스템에서 가능하다. 이것은 오퍼레이터에 의해 작동되고 컴퓨터가 자동적으로 패키지를 정렬할 수 있는 이미지 인식 시스템을 가능케 한다. 또한 시스템에 새로운 가치를 추가할 수 있으며 오퍼레이터의 독립성을 향상시킴과 동시에 배치의 정확도를 높일 수 있다.
제4절 Glass to Metal Sealing (GTMS)

Glass to Metal Sealing은 내부 환경의 간섭 없이 내부에서부터 metal package 외부에 이르기까지 metal wire를 통한 고립된 전류를 허용하면서 진공상태의 밀봉을 만들어내어 유리와 금속간의 접합을 이루어내는 밀봉 기술이다.

민감한 전기적 부품 소자들은 오직 고립된 전류만을 받아들이며 외부의 불리한 환경적 요인들로부터 보호받게 된다. 이때 적용되는 Optical-quality 유리는 금속 패키지 내 광학 센서로서 가시광선 및 비가시광선을 통과시키는데 사용될 수 있다.

Glass to Metal Sealing을 하기위한 많은 방법들이 존재한다. 하지만 필수적으로 제어된 대기 환경을 갖춘 고온의 furnace를 통해 각각의 유리를 녹이고 금속 부분과의 접합을 시키는 과정이 뒤따른다. 이때 산화물은 패키징 재료와 고안되어진 Hermetic package의 용처에 따라 사용되어 질 수도 있다. 알맞은 밀봉을 하기위해 접합되어지는 금속과 유사하게 열적 팽창물을 지닌 유리는 금속의 열적 팽창성을과의 차이 때문에 완전 압축 밀봉된 Packaging을 구성할 수 있다.
일반적으로 Glass to Metal Sealing (GTMS)은 유리와 금속과 진공 상태로 조립한 것으로, 밀폐 봉인된 벽을 통해 전기를 보내는 데 사용된다. 보통의 GTMS는 모재 소결 유리가 외부의 금속과 함께 봉인된 것으로 소결 유리는 다시 하나 또는 그 이상의 금속 리드와 함께 밀봉되어 있다.

유리와 금속의 서로 다른 팽창계수로 인해 용해 과정에서의 기계적 스트레스는 피할 수 없기 때문에 특수 디자인 기술을 활용하여 생산 공정 과정 중에 이러한 스트레스가 패키징의 강도를 떨어뜨리려는 것을 방지할 수 있다.

Glass to Metal Sealing (GTMS)의 형태는 보통 정합밀봉/압축밀봉 등 크게 2가지로 구분된다.

1) 정합밀봉: 코바(KV)로 알려진 철-니켈-일산화탄소 합금(철: 54%, 니켈: 28%, 일산화탄소: 18%)을 유리와 밀봉하는 데 적용되며, 코바(KV)의 열팽창 계수는 넓은 온도 범위에서 유리와 동일하여 Packaging의 강도를 유지하는데 효율적이다. 정합밀봉 타입은 거의 모든 형태의 터
미널 생산에 이용되고 있으며, 동시에 높은 밀폐성과 전기 절연 특성을 나타낸다.

2) 압축 밀봉 : 압축 밀봉은 가용 온도 범위에서 금속과 유리의 팽창 계수와 유리의 동심 압축 스트레스를 동시에 대응하기 위해 적용되며, 일반적으로 강철 밀봉 또는 스테인레스강 하우징, 철 밀봉 및 #42 합금 밀봉 등 3가지의 압축 밀봉기술이 있다.
제5절 열전발전소자의 Package 기술 동향

처음 열전변환모듈을 사용했던 우주에서는 진공분위기에서 연속운전을 하고 운도변화가 없어 흑성탑사위성용으로 10년 이상 운전된 경험이 있는 반면에 지상의 열전변환모듈은 산화 및 부식성 분위기에서 사용되는 경우가 많고, 열원의 가동이나 정지에 따른 열 사이클 변화의 영향을 받기 때문에 부식내성과 열응력 완화 등의 대책이 필요하다.

열응력 완화에 대한 대책으로는 고온 측의 기판을 삭제한 폴란드 skeleton모듈이 있다. 기존의 모듈은 상하면에 세라믹 등의 기판을 갖춘 것이 일반적이다. 그 중 고온 측의 기판은 열팽창으로 기판상의 전극과 이에 접합된 열반도체와의 접합계면에 열응력이 발생하여 균열이 일어날 염려가 있다. 기판의 열팽창은 기판의 크기 및 운도변화의 폭에 비례하기 때문에 대형 모듈과 고온용 모듈의 정도에 따른 대책이 중요하다.

<그림 4-11> 일반적인 열전발전모듈(좌)과 Semi-Rigid Skeleton (Enerkit™)

열전재료 중 Skutterudite와 같은 소재는 산소에 매우 민감하게 반응하는 경향이 있고 부식에 의한 성능감소가 급격하게 이뤄져서 부식내
성에 대한 대책이 반드시 필요하다. 시스템 단계에서는 GM의 열전 발전기처럼 격벽을 사용하여 산화를 방지할 수 있으나, 열전발전모듈 단계에서는 모듈의 캡슐화를 통해 열전소재의 산화를 방지해야 한다.

<그림 4-12> 열전발전모듈의 부식 예(Skutterudite)와 캡슐화

저온 환경에서는 에폭시, 실리콘 등의 재료를 활용하여 열전발전소자의 측면을 실링하는 Polymer Coating과 금속으로 실링하는 방법이 있다. Polymer Coating은 실링재료로 사용하는 소재의 내열성에 영향을 받게 되며, 내부의 진공상태가 완벽하지 않은 특징을 갖는다.

64) Scott Whalen, Encapsulation of High Temperature Thermoelectric modules, 2012
고온 환경에 적응한 방법으로는 스텐리스 케이스에 모듈을 진공 봉입한 것이 있다. 이 기술은 일본의 Hitachi chemical에서 연구 중인 방법으로 600 ~ 1,000 ℉의 열원에 사용 가능한 SiGe 모듈에 적용한 것이 다.

진공 밀봉 모듈은 스텐리스 케이스(case, 55×50×11mm)에 모듈(최대 40×40mm)을 진공 봉입한 것이다. 상면 케이스는 두께 0.1mm의 스텐리스이며 내부가 진공으로 유지되고 1bar(0.1MPa)로 가압되어 내부 각 재료의 접촉 열 저항이 저감된다. 모듈 본체는 진공 밀봉으로 유지되기 때문에 산화 분위기나 부식성 분위기에서도 사용이 가능하다. 내열성 전극이 케이스를 관통하고 있으며 최고 사용온도는 모듈의 고온 측에서 650℃이다.
<그림 4-14> 금속용기에 진공 밀봉된 열전발전모듈 최종형상(좌), SiGe 모듈(우)
제 5장 열전발전의 산업 및 시장

제1절 열전발전 산업의 특성 및 변화요인

DOE(미국 에너지부)와 LLNL(로렌스 리버모어 국립연구소) 발표에 따르면 최근 10년간 매년 미국 전체 발전량의 50-58% 이상이 열 형태로 버려지고 있는 것으로 나타났다. 열전효과의 발견 이후 특수목적으로만 활용되었으나, 2000년경부터 나노기술의 출현과 신소재·공정기술의 개발 및 기술상용화에 대한 기대로 용도·열원별로 기초·원천연구부터 응용·상용화 연구가 동시에 진행되고 있다. 65)

2012년 “Overview of Progress in R&D for Thermoelectric Power Generation Technologies in Japan”에서는 열전발전분야의 로드맵을 아래와 같이 제시하였다. 이에 따르면 열전발전은 ①모듈의 효율 증가와 ②열전발전시스템의 규모가 증대되면서 연구개발 및 상용화 분야가 확대되는 것을 볼 수 있다.

65) 한국연구재단 웹진, 열전발전 기술 현황 및 시사점
열전발전분야는 급변하는 시장 환경 변화에 따라 에너지 효율향상, 휴대용 전원, 무선통신의 발전 등과 함께 진화해 가고 있다.

1. 에너지 효율 향상

최근 국제 에너지 시장에서는 전기 에너지를 비롯한 에너지 단가 상승, 탄소세 도입 등에 따라 신재생 에너지와 친환경 에너지에 대한 필요성이 증대하고 있으며, 에너지 재활용 또는 미활용 에너지 회수 및 효율 향상에 따른 다양한 부가가치의 창출이 가능한 신에너지 시장이 도래하고 있다.

66) Overview of Progress in R&D for Thermoelectric Power Generation Technologies in Japan, 2012
과거에는 열전소재의 가격이 비싸고 에너지 변환효율이 낮다는 이유로 우주선의 전력공급 장치나 무선통신기 전원공급 장치, 핵잠수함의 동력공급 장치와 같은 우주/군사용 목적의 특수 분야 응용에 한정되었으나 최근 산업폐열을 회수하여 전기를 생산함으로써 에너지절약을 할 수 있을 뿐만 아니라 태양열, 지열, 해양온도차 등의 자연에너지원을 통해 전기를 얻을 수 있어 신재생 에너지원으로서도 큰 주목을 받고 있다. 67)

근래 공장 배열이나 자동차 배열, 연료전지 배열 등 열에너지에서 전기로 직접 변환하는 열전기술은 활용가치가 높아지고 있고 기기의 고효율화, 에너지 절감 차원에서 미이용 열의 유효이용은 중요한 연구 과제가 되었다. 특히 열에너지의 이용가치 높은 전기로 직접 변환하는 열전기술은 열전재료와 열전발전모듈의 성능 측면이 매우 중요하므로 소자화 및 소자의 변환 성능을 높이고 경제적으로 제조할 수 있는 제조 기술과 시스템화에 필요한 소자의 배치 최적화, 열 설계 기술, Power matching 기술 및 대형화를 위한 연구개발이 지속될 것으로 예상된다.

67) 물리학과 첨단기술, 나노구조 기반 고효율 열전 에너지 변환 기술, 2013.03
2. 휴대용 전원

최근 입을 수 있는 전자기기 즉, 웨어러블 스마트기기는 시대가 오고 있다. 웨어러블 스마트기는 가볍고 자유자재로 휘어지는 형태로 개발되고 있지만 기기에 전기를 공급할 전원 개발과 베타리 충전처럼 아직 해결해야 할 과제가 많이 남아 있다. 이런 기술적 문제점을 열전발전이 해결할 수 있을 것으로 기대된다. 적은 양의 전력이지만 지속적으로 공급할 수 있고 소형화 및 경량화가 가능하기 때문이다.

인체의 열을 이용해 스마트기기를 입고만 있어도 충전이 되거나 쓰고 있으면 충전이 되는 방식 등 다양한 형태의 웨어러블 기기의 보조 전원으로 활용할 수 있어 열전발전의 기술적 가치는 나이 갈수록 커지고 있다. 한 예로 초기 출시된 구글 글라스 기기의 문제점이었던 짧은

68) 한국에너지기술평가원, 에너지기술 이노베이션 로드맵, 2014.12
배터리 전원시간을 해결할 방법으로 인체의 열을 이용하는 열전발전이 고려되고 있다. 69)

<그림 5-2> 구글 글라스

3. 융복합 발전

발전 설비에 대한 토탈에너지(total energy)의 효율 향상 시책으로 기존 발전 시스템의 고효율화와 에너지 절감 등 다양한 연구가 이뤄지고 있다. 또한, 활용되지 않고 다량으로 버려지는 열의 재이용에 대해서도 활발한 연구가 이뤄지고 있다.

에너지의 효율적 이용을 위해 반드시 발생하는 손실 대부분은 열로서 존재하며, 이들 배열은 저온으로 널리 확산되고 있다. 따라서 저온의 배열을 사용하여 전기 에너지로 변환할 수 있는 열전발전 시스템에 대한 기대가 커지고 있다. 70)

현재의 열전발전 효율이 타 발전에 비해 낮아 열전 변환디바이스를 단독으로 사용하기보다는 어떠한 에너지변환, 저장디바이스와 조합시킨

69) 한국전기연구원, 탄소나노소재의-Wonderland, 2015
70) KISTI, 미이용 열을 활용하는 열전발전기술, 2015
에너지 집적시스템(Integrated Energy System)을 설계하여 열전발전 특성을 살리는 것이 좋은 대책이라고 생각된다.

태양광 발전에서 태양광 중의 가시광과 자외~근적외광은 태양전지에서 전기로 변환되어 발전하며, 흡수되지 않고 남은 대부분의 적외광선은 방출되어 버린다. 한편 적외선은 물체에 흡수되어 열로 변하므로 적외선을 열전모듈에 직접 흡수시켜서 발전시킬 수 있다.

최근에 넓은 파장범위에 걸쳐서 태양광을 가능한 헷지지 않게 이용하기 위하여 태양전지와 열전모듈을 직접 조립한 하이브리드 디바이스를 고안하였다. 이 디바이스는 색소증감태양전지(DSSC), 선택광흡수막(SSA), 열전모듈(TE)의 3가지 시스템을 직접 포개며 DSSC와 TE를 직접로 연결한다.

이 디바이스에 태양광이 닿으면 선 DSSC에서 자외~가시광 일부가 흡수되어 광발전한다. 투명한 DSSC를 투과하고 남은 적외선을 포함한 광선은 SSA에서 거의 95%가 흡수되어 열로 변환되고 이 열이 TE 상부를 가열하여 온도차에 의하여 열발전한다. 이와 같은 태양광발전과 태양열발전을 하나의 디바이스에서 동시에 수행할 수 있기 때문에 디바이스 전체의 에너지변환효율을 향상시킬 수 있다.

TE를 조합한 디바이스에서는 13% 이상의 에너지변환효율을 얻어 DSSC 단독의 에너지변환효율 9%에 비해 약 40% 정도 증가하였다. 71)

71) KISTI, 태양에너지 수집을 위한 열전변환재료, 2012
향후에는 폐열과 진동이 동시에 존재하는 곳이나 태양과 열이 존재하는 곳에 기존의 압전소자나 태양전지 소자와 함께 열전기술을 사용함으로써 단위면적당 에너지 하베스팅 효율을 극대화할 수 있을 것이 다. 최근에는 연료전지 또는 가정용 마이크로 열병합발전 시스템으로 응용이 연구 중이며 근래에 관련 제품들을 볼 수 있을 것으로 판단된다.

4. 무선통신의 발전

향후 10년 이내에 모든 종류의 IT 융합부품들에 관련 기술들이 채용되어 전기에너지 발전설비들의 최적화 및 지능화 기기와 전기에너지수확기, 폐에너지 재활용기기들이 발명될 것으로 전망된다. 72)

72) 정보통신산업진흥원, 에너지수확용 재생용 IT 융합기술의 개발동향, 2013
5. 핵융합분야의 열전발전 응용

현재 국제협력사업으로 건설 중에 있는 ITER(국제열핵융합시험로)의 경우를 보면 초저온의 초전도 자석에서 고온의 플라스마 표면까지의 거리가 2m 정도에 불과하여 온도 구배가 아주 크다. 그러므로 핵융합로는 열전변환 기술이 적용될 수 있는 분야가 많으며, 전력생산 방식의 하나로 고려하여 볼 수 있다.

온도 구배가 큰 부위에 열전변환재료를 삽입하여 발전하는 열전발전 개념은 핵융합로에서 다이버터(Divertor) 열을 이용하여 직접 발전하는 방안으로 검토하여 볼 수 있는 개념이다. 핵융합로는 플라스마의 열을 다이버터가 받아서 물 냉각 또는 가스 냉각으로 열을 제거하므로 제1벽과 냉각수가 호르는 부분 사이에는 온도 차가 크게 발생한다.

핵융합로의 경우와 같이 온도차가 1,500K(냉각수 온도 350K, SiC 제1벽측 온도 2,000K 정도를 가정한 경우) 이상이면 15% 정도의 변환효율을 얻을 수 있다. 73) 국내에서도 “동위원소열전발전기용 고효율 열전소자 기술 개발”과 같은 핵융합 열전발전에 대한 연구가 진행되고 있어 관심을 가지고 지켜볼 필요가 있다.

6. 전자 부품의 소형화

반도체와 나노기술의 발달에 따라 전자부품은 더욱 소형화 될 뿐만

73) KISTI, 핵융합분야의 열전변환기술 응용, 2012
아니라 성능 향상과 집적화가 요구되고 있다. 또한 전자부품의 발열문제를 수반하고 있어 이를 해결하기 위해 열전기술의 지속적인 연구개발이 요구되고 있다.
제2절 열전발전 시장 전망

열전변환기술은 열전냉각과 열전발전 분야로 양분되고 있으며, 최근의 나노기술 발전으로 기술의 핵심인 열전반도체 성능이 비약적으로 향상되었고 새로운 활용기술을 개발함에 따라 급속히 시장이 활성화되고 있다.

현재 응용 또는 예상되고 있는 열전발전 기술 분야는 우주선 전원, 군용 비상발전기, 극지용 자가 발전기 등 특수 전원용, 자가발전 센서 node 등 마이크로 전원용, Co-generation용 또는 CHP(Combined Heat and Power), 폐열활용 열전발전시스템(자동차 및 산업폐열), 전기자동차 난방용 등이 있다.

2004년 DOE/EPRI High Efficiency TE Workshop에서는 ZT 값이 2인 열전소자가 개발될 경우 시장 규모는 자동차 부분에만 연간 수십억 달러의 시장이 창출될 것으로 예측하며, 최근 차량폐열발전기 시제품들을 주요 자동차업체에서 발표하였다.

미국 ENECO사에서는 2006년도에 2010년도 전체 열전기술 잠재시장을 200억 달러 규모로 예측하였으며, 이 중 열전냉각 시장은 50~60억 달러 규모, 열전발전 기술 시장은 중소규모 산업폐열을 활용하는 것을 제외하고도 140~150억 달러 이상의 규모로 예측하였다.

2014년 한국에너지기술평가원에서 보고한 에너지기술 이노베이션 로드맵에서는 미국, 일본에서의 예측 자료와 국내 냉각모듈 관련 기업의
자료 및 한국자동차공업협회에서 발간한 “2011년도 자동차산업전망”을 참조하여 공격적 시각으로 열전발전기 시장을 예측하였다. 여기에서는 열전 발전 소자의 성능지수(ZT)가 1.5에 도달하면 열전발전 시장은 냉각시장과 비슷하지만 ZT 값이 더 커지게 되면 열전발전 시장이 급속히 성장할 것이라고 보고하였다.

또한 열전소재의 목표 성능 ZT=1.5를 달성할 것으로 예상되는 2018년의 잠재적 열전발전 시장은 세계 열전발전 시장을 약 150~180억 달러 규모, 국내 시장을 4,500~5,000억 원 규모(세계시장 3% 정도)로 예상하였다.

74) 한국에너지기술평가원, 에너지기술 이노베이션 로드맵, 2014.12
성장할 것으로 전망하고 있다. 에너지 하베스팅 모듈의 개당 가격은 2012년도 현재 약 1불대 있으나 2022년에는 보다 고부가가치 시장으로 확대되어 개당 약 2.6불대를 형성할 것으로 전망하고 있다.

<표 5-1> 전세계 에너지 하베스팅 시장전망 2012~2022년

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number million</td>
<td>641.8</td>
<td>695.6</td>
<td>751.7</td>
<td>867.4</td>
<td>941.7</td>
<td>1038.4</td>
<td>1162.6</td>
<td>1308.8</td>
<td>1482.1</td>
<td>1755.3</td>
<td>2067.8</td>
</tr>
<tr>
<td>unit value</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
<td>1.3</td>
<td>1.5</td>
<td>1.8</td>
<td>2.1</td>
<td>2.4</td>
<td>2.4</td>
<td>2.6</td>
</tr>
<tr>
<td>Total value</td>
<td>706.3</td>
<td>761.8</td>
<td>818.5</td>
<td>978.4</td>
<td>1178.8</td>
<td>1520.4</td>
<td>2097</td>
<td>2766.6</td>
<td>3588.2</td>
<td>4431.8</td>
<td>5280.7</td>
</tr>
</tbody>
</table>

<그림 5-4> 전세계 에너지하베스팅 수량_단위 백만개(좌) 및 시장규모_단위 백만불(우)

이와 같은 에너지 하베스팅 시장 중 가전 (consumer electronics)이 가장 큰 시장을 형성 할 것으로 예상하는데, 2022년 2조 6천억 규모로 전체 에너지 하베스팅 시장의 약 50%를 차지할 것으로 전망하고 있다. 또한 2022년 에너지 하베스팅 기술별 전세계 시장 점유율은 아래 그림과 같다. 태양전지 기술이 46.6% 가장 크게 에너지 하베스팅 시장에 사
용될 것으로 예상하고 되며, 열전 에너지 하베스팅 기술은 약 14% 정도로 적용될 전망이다. 75)

<그림 5-5> 2022년 에너지 하베스팅 시장 점유율

에너지 하베스팅의 응용기기 시장규모가 2020년에 43억 7천만 달러에 달할 것으로 전망되며, 열전소자분야의 시장규모는 2억 3,600만 달러로 추정된다. 열전 에너지 하베스팅 시장은 2012년 3,168만 달러에서 2017년 1억 8,100만 달러로 증가하고 2022년에는 7억 4,600만 달러로 연평균 37.1% 성장할 전망이다.

75) 세라믹스, 2014년 에너지 하베스팅 산업화 동향, 2014
용도별로는 위에 표에서 보듯이 무선센서네트워크(WSN)용 열전소자 시장이 2012년 5만 달러에서 2017년 6,600만 달러, 2022년 3억 600만 달러로 증가하면서 연평균 139.2%로 고성장할 전망이다. 군사 및 우주·항공용 열전소자 시장은 2012년 3,000만 달러에서 2017년 4,500만 달러, 2022년 6,400만 달러로 연평균 7.9% 성장할 전망이다.

기타 산업용 열전소자 시장은 2012년 100만 달러에서 2017년 3,500만 달러, 2022년 1억 9,800만 달러로 연평균 69.7% 성장할 전망이다. 헬스케어용 열전소자 시장은 2012년 10만 달러에서 2017년 700만 달러, 2022년 3,300만 달러로 연평균 78.6% 성장할 전망이다.

기타 소비자용 열전소자 시장은 2012년 2만 달러에서 2017년 1,900만 달러, 2022년 1억 2,500만 달러로 연평균 139.7%의 가장 높은 성장률 기록할 전망이다. 기타 비(非)소비자용 열전소자 시장은 2012년 50만 달러에서 2017년 900만 달러, 2022년 2,000만 달러로 연평균 44.6% 성장할 전망이다.
2011년 일본 YANO Research의 “일본, 진동·열전 발전 디바이스 시장에 관한 조사 결과”에 따르면 열전발전 기술의 개화기로 예상되는 2016년~2020년에는 산업, 자동차 뿐 아니라 가전제품에까지 열전발전기술이 적용되어 수백조원의 시장이 창출될 것으로 예상하였다.

열전발전기술은 2016년 이후 산업폐열 활용분야에서 자동차, 태양열발전 등의 분야로 확대되기 시작하고, 향후 전력기기 및 가전제품에도 적용될 것으로 예상하였다. 76)

76) 한국전자통신연구원, 실리콘 기반 열전소자 기술, 2014
<그림 5-8> 일본의 열전발전 디바이스 시장 규모 추이 예측

77) 야노경제연구소, 진동 열전발전 디바이스 시장에 관한 조사결과, 2011
제 6 장 열전발전관련 경쟁사 분석

제 1절 경쟁사 분석

열전기술은 1950년대부터 우주 및 군사용으로 개발되어 사용되었으나 최근에는 500W급 이상의 대형 열전발전시스템 제작에서부터 차량용 시트의 냉각 및 가열 시스템에 이르기까지 응용영역이 크게 확대되고 있다. 2011년도 미국 Amerigon(현재는 Gentherm)사의 경우 자동차 냉/온 시트로 총매출액 4,400억원을 달성하기도 했고 중국의 Fuxin사는 2008년 기준으로 열전모듈 생산으로만 600억원의 매출을 달성하고 현재 성장세가 지속되고 있는 실정이다.

미국·독일·일본·러시아 등을 중심으로 많은 기업들이 현재 수준의 ZT값을 나타내는 소재를 활용하면서 열전모듈과 실용제품을 제조하고 있다. 즉 열전 나노신소재를 직접적으로 사용해 모듈을 제조하기 보다는 높은 신뢰성을 확보할 수 있는 기존 소재를 사용해 산업화에 활용하고 있다.

최근에는 국내에서도 기존 중소기업 이외에 LG, 삼성을 비롯해 열전 모듈을 장착해 판매할 아이템을 발굴하고 마케팅할 수 있는 역량을 가진 대기업의 참여가 가시화되고 있어, 신소재개발과 그를 활용한 실용 모듈의 국내 제작기술도 크게 향상 될 것으로 예상된다. 78)

열전소자 관련 미국의 기업으로는 Marlow, Melcor, Tellu-rex, 일본

78) 재료연구소, 소재기술백서, 2012
기업으로는 Komatsu, Ferrotec, 유럽에서는 Supercool, Micropelt 등이 있으며, 이들은 현재 기존의 전통적인 소재를 사용하여 열전소자를 제작하고 있으나, 점차 실험실에서 증명된 고효율 열전소재를 채택하고자 하는 노력을 기울이고 있는 것으로 파악되고 있다. 특히 GM 자동차에서는 연비 효율향상과 관련하여 고온에서 안정한 열전 소재 및 모듈의 개발에 관한 연구를 진행하고 있다.

최근 일본의 도시바에서는 1W/cm^2에 가까운 Giga Topaz라는 소자를 시범적으로 개발하였으며, 상품화 연구가 진행되고 있다. 또한 미국의 Hi-Z사, 일본의 Komatsu, Yamaha, Ferrotec, 러시아의 NORD, Kryotherm 등에서 상온 열전반도체인 Bi-Te계 열전반도체를 상용화 완료하여 열전소자를 판매하고 있다.

한편 소재 강국인 일본에서는 국가 주도의 “고효율 열전 변환 시스템 개발”라는 프로젝트(NEDO)가 2002년부터 2007년까지 5년 동안 250억원대의 연구비로 수행되었으며, IHI사, UBE, eco21, Komatsu, Toshiba, Yamaha 등의 회사가 참여하였다. 이외에도 산업기술종합연구소를 중심으로 소재를 메인으로 하는 다수의 연구 프로그램이 진행중이다.

또한 미국의 Michigan 주립대학(Prof. Kanatzidis 그룹)에서 LAST (Pb-Ag-Sb-Te) 계 열전반도체를 발표하였으며, 이후 일본 오사카대 Yamanaka 연구실 등에서도 LAST계 열전반도체 연구가 진행 중이다. 열전 소재의 고차구조제어를 통해 성능 지수 향상은 Microprocessor, LED, LD, 통신기기 등 고집적화 전자소자의 냉각에 반드시 필요하며
또 신재생 에너지로써 가장 경쟁력 있는 발전원이 될 것으로 기대된다.

<표 6-1> 열전변환기술 - 국내외 산업동향

<table>
<thead>
<tr>
<th>기업명</th>
<th>경쟁사 동향</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentherm(Amerigon) (미국)</td>
<td>자동차 시트의 냉각 및 가열을 통해 운전자 기후 제어 CCS판매 2011년도 약 880만개 CCS판매 (4,400억원 매출)</td>
</tr>
<tr>
<td>Fuxin (중국)</td>
<td>2008년 기준 열전모듈 생산으로 600억 매출 달성. 미니냉장고, 와인셀러 등 주로 열전냉각 분야 제품 생산</td>
</tr>
<tr>
<td>Global Thermoelectric (캐나다)</td>
<td>대형 열전발전시스템 개발의 선도기관 (500W 급 열전발전시스템 제작)</td>
</tr>
<tr>
<td>Micropelt (독일)</td>
<td>마이크로 열전발전시스템 제조 및 판매 박막형 열전발전 시스템 시제품 - 자가발전 및 리모트콘트롤 제어 전력 송출</td>
</tr>
<tr>
<td>Ferrotec (일본)</td>
<td>High-end 제품(나노기술 활용) 보유 자가격 발생형태 제품기술 보유</td>
</tr>
<tr>
<td>Kryotherm (러시아)</td>
<td>0.4W~ 300W급 냉각성능의 열전냉각기 생산 판매 5, 15, 25 W 열전발전기 주문생산 판매 자운용, 중운용, 고운용 열전발전모듈 제작</td>
</tr>
<tr>
<td>Marlow (미국)</td>
<td>중국 Fuxin 열전모듈의 배급자 다양한 형태의 열전모듈 제작 판매 에너지하브스팀 무선 파워센서 제작/판매</td>
</tr>
<tr>
<td>Hi-Z (미국)</td>
<td>Bi–Te계 열전모듈 제작 (10년이상 내구성) 기술 요구</td>
</tr>
<tr>
<td>BSST (미국)</td>
<td>차량용 열전모듈 개발</td>
</tr>
<tr>
<td>Laird (미국)</td>
<td>이전 기업명 : Nextreme / 2㎜이하의 박막형 열전소자 제작</td>
</tr>
<tr>
<td>Enerkit (스페인)</td>
<td>열전소자를 이용한 충전기 개발</td>
</tr>
<tr>
<td>Fujifilm (일본)</td>
<td>새로운 열전소자기술 개발</td>
</tr>
<tr>
<td>GMZ (미국)</td>
<td>자동차용 열전발전기 개발</td>
</tr>
</tbody>
</table>

79) 원건세라믹, 열전 소재의 개발 동향 및 응용, 2013.02
제2절 주요 경쟁사 분석 및 제품 동향

1. 우창엔지니어링

<table>
<thead>
<tr>
<th>대표자</th>
<th>정원석</th>
</tr>
</thead>
<tbody>
<tr>
<td>설립일</td>
<td>1999년 7월 13일</td>
</tr>
<tr>
<td>URL</td>
<td>http://www.woochangeng.com/</td>
</tr>
<tr>
<td>기업형태</td>
<td>소기업 (외감)</td>
</tr>
<tr>
<td>사원수</td>
<td>22명</td>
</tr>
<tr>
<td>자본금</td>
<td>8억원</td>
</tr>
<tr>
<td>매출액</td>
<td>103억 5,629만원</td>
</tr>
<tr>
<td>당기순이익</td>
<td>1억 9,946만원</td>
</tr>
<tr>
<td>업종</td>
<td>전기회로 개폐, 보호 및 접속 장치 제조업</td>
</tr>
<tr>
<td>주요사업</td>
<td>충전기, VFD, LCD 디지털계기판, 자동차 전장품 5kw급 수직형 직결 열전발전기 외</td>
</tr>
</tbody>
</table>

(주)우창엔지니어링은 1990년 섬유산업도시 대구에서 섬유기계분야 전자제어계측장치 국산화 개발 및 보급을 목표로 설립되었다. 2000년 이후 본사를 신축, 생산라인을 정비확충하고, 연구 개발 설비를 보완하여 방산통신장비관련 전력변환장치, 자동차용 Meter Cluster 등 전장품 개발 및 생산을 통하여 매년 20% 이상의 고속성장을 이루었으며, 고용 창출, 지역 산업 연계 발전에 이바지 하여, 2009년 대구광역시로부터 대구를 대표하는 100대 스타기업으로 선정되는 등 건실한 기업으로 성장 하였다.

80) http://www.jobkorea.co.kr/Recruit/Co_Read/C/wcbig6400?Oem_Code=C1
2010년 저탄소 친환경 이동수단인 전기차 관련 주요 전장품 및 전기차량용 Battery 급속충전기 등을 개발, 생산하여 전기차 부품 표준화를 선도하고 있으며, 국내 전기차 제조업체 공급은 물론 싱가포르를 비롯한 동남아 시장에 진출하는 등 수출에도 박차를 가하여 2011년 수출 1백만불을 시작으로 점차 늘려가고 있다.

우창엔지니어링의 사업영역은 Portable Changer, Quick Changer, Meter Cluster, DC-DC Convertor, BMS / Meter Cluster, HeadLight Levelling Device / 군 통신용 전력 공급장치, 전력 변환장치, 발전장치 제어기 / 열전 반도체소자를 이용한 발전설비, 연료전지 제어 장치 등이다. 81)

가. 주요 제품
○ MeterCluster - S&T motor 엔진이륜차용, 전기이륜차용 Speed, RPM 등 표시 장치 (LCD, VFD, Stepping Motor)
○ Head Light Lebeling Device - 자동차용 head Light 조사각도 자동조절 장치
○ 군 통신관련 전력제어장치 - 무정전 5KW 전원공급장치, 차량용 10KW 발전장치 및 제어장치 (엔진속도제어, 전원분배, 제어기)
○ 열전 발전기 및 그 설비 - 열전 반도체 소자를 이용한 전기 (AC,DC) 발생 장치 및 그 설비
○ 전기이륜차용 전장품 - DC-DC Convertor, Sound Module,
○ Lithium-Battery Charger - Portble charger(600W), Quick Charger(2.5KW)

○ 이동형 연료전지. 베타리 하이브리드 파워팩 시스템 - 하이브리드 시스템 제어 및 통합 전력 변환 장치

나. 주요 고객사
S & T Motors, 대림자동차, 우즈베키스탄 GM, 석문전기(국방부), AD TecS(Singapore), 세종공업 82)

다. 열전발전관련 동향
우창엔지니어링(대표 정원석)이 포항산업과학연구원(RIST·원장 우종수), 코헥스(대표 최영종)와 공동으로 산업현장에서 버려지는 열을 이용해 전기를 생산하는 열전발전시스템을 개발했다.

<그림 6-1> 포항제철 가열로에 설치한 열전발전시스템

공동연구를 통해 개발한 열전발전시스템은 열전발전스택(Stack)과 최대전력점추종(MPPT) 알고리즘 및 전력제어기를 적용한 일체형 시스템이다. 이 시스템은 현재 180도 폐열을 이용해 5kW의 전력을 생산할 수 있다. 산업현장에서 실증시험도 마쳤다. 지난해 말부터 포항제철소 2열연공장의 2가열로에 이번 열전발전시스템을 적용, 가열로 1기에서 배출되는 285도의 열에서 5~6kW의 전력을 안정적으로 생산했다.

우창엔지니어링과 RIST는 이번 열전발전시스템 개발을 시작으로 제철소뿐만 아니라 조선과 항공기, 자동차 등 열이 발생하는 모든 분야에 적용할 수 있는 상용화 제품을 지속적으로 개발할 계획이다. 이를 위해 정부 과제사업도 준비 중이다. 83)

2. 피티써텍

<table>
<thead>
<tr>
<th>대표자</th>
<th>김현석</th>
</tr>
</thead>
<tbody>
<tr>
<td>설립일</td>
<td>2009년 12월 2일</td>
</tr>
<tr>
<td>URL</td>
<td>peltier.co.kr</td>
</tr>
<tr>
<td>기업형태</td>
<td>소기업 (일반법인)</td>
</tr>
<tr>
<td>사원수</td>
<td>14명 재직중</td>
</tr>
<tr>
<td>자본금</td>
<td>5,000만원</td>
</tr>
<tr>
<td>매출액</td>
<td>11억 1,663만원</td>
</tr>
<tr>
<td>당기순이익</td>
<td>6,516만원</td>
</tr>
<tr>
<td>업종</td>
<td>전자코일, 변성기 및 기타</td>
</tr>
<tr>
<td>주요사업</td>
<td>열전소자 반도체 검사기기</td>
</tr>
</tbody>
</table>

피티써텍크는 열전소자의 국산화 및 관련기기의 보급을 노력 하는

83) http://www.etnews.com/20150506000104
84) http://www.jobkorea.co.kr/Recruit/Co_Read/C/ptc09?Oem_Code=W1
회사로서 2009년 창립 되었다. 국내 열전소자 관련 업계의 선두에 서서 각종 LCD, PDP장비, 반도체 장비(THC, Chiller, 향온수공급기 등)의 국산화 및 기존 사용품의 A/S를 책임지고 있으며 열전 소자의 효과적인 온도제어방법을 세계 최초로 개발하여 기존 국내 반도체관련 장비의 성능을 외국장비에 비해 한 차원 높이는 개기를 이룩한 회사이다.

특히 2010년부터는 신재생에너지 사업부를 설립하여 열전소자를 이용한 각종 상업화 및 가전제품의 개발 도한 성공리에 이루어 가고 있으며 폐열을 이용한 크린 에너지의 회수에도 단연 세계에서 가장 앞서가는 기술력을 갖고 있다. 85)

85) http://peltier.co.kr/company/company2.php
3. 테그웨이

<table>
<thead>
<tr>
<th>대표자</th>
<th>이경수</th>
</tr>
</thead>
<tbody>
<tr>
<td>설립일</td>
<td>2014년 08월 22일</td>
</tr>
<tr>
<td>URL</td>
<td>tegway.co/</td>
</tr>
<tr>
<td>기업형태</td>
<td>소기업 (일반법인)</td>
</tr>
<tr>
<td>사원수</td>
<td>4명 재직중</td>
</tr>
<tr>
<td>자본금</td>
<td>2억 3,000만원</td>
</tr>
<tr>
<td>매출액</td>
<td>-</td>
</tr>
<tr>
<td>당기순이익</td>
<td>-8,900만원</td>
</tr>
<tr>
<td>업종</td>
<td>그 외 기타 전자부품 제조업</td>
</tr>
<tr>
<td>주요사업</td>
<td>웨어러블 열전 발전 소자 제조 판매</td>
</tr>
</tbody>
</table>

(주)테그웨이는 2014년에 설립된 신생 벤처기업으로 KAIST 내에 위치한 교원창업회사이다. 카이스트(KAIST) 조병진 교수(52)가 벤처 기업인 테그웨이의 이경수 대표(55)와 손잡고 ‘웨어러블 체온 전력생산 기술’을 개발, 지난 4일 프랑스 파리에서 열린 유네스코의 넷엑스플로 포럼에서 ‘세상을 바꿀 10대 기술’의 그랑프리를 수상87)했다.

이 대표와 조병진 교수는 카이스트 선후배 사이로 지난 85년 처음 만났다. 이후 이 대표는 카이스트 재료공학 박사와 한국전자통신연구원 (ETRI) 책임연구원을 거쳐 1996년부터 벤처사업가의 길을 걸었다. 지난 2010년 후배인 조병진 교수의 프로젝트가 미래창조과학부 융합연구사업으로 선정되자 이 대표는 CEO로, 조 교수는 CTO로 함께 손을 잡게 하였다.

86) http://www.jobkorea.co.kr/Recruit/Co_Read/C/tegway?Oem_Code=C1
87) 이 상은 유네스코가 디지털기술 연구 기관인 넷엑스플로가 2008년부터 매년 전세계 200여 명의 전문가 그룹에 의뢰해 선정해온 것으로 역대 수상 기술로는 트위터와 3D프린터 등이 있음.
지난해 9월 SK그룹의 글로벌 벤처 스타 프로젝트로 선정돼 창업지원 금을 받고 두 사람은 테그웨이를 설립했다. 테그웨이는 현재 대전 창조 경제혁신센터에 입주해 있으며 곧 SK로부터 최고 2억원의 기술개발자 금도 지원받을 전망이다. 또 SK텔레콤의 미국자회사인 SK이노파트너스 지원으로 실리콘밸리 진출도 계획하고 있다. 5년 내 1000억원 매출이 목표다.

4. 에이스텍

<table>
<thead>
<tr>
<th>대표자</th>
<th>제동국</th>
</tr>
</thead>
<tbody>
<tr>
<td>설립일</td>
<td>2000년 10월</td>
</tr>
<tr>
<td>URL</td>
<td>acetec.blogwa.net/</td>
</tr>
<tr>
<td>기업형태</td>
<td>법인사업체</td>
</tr>
<tr>
<td>사원수</td>
<td>29명</td>
</tr>
<tr>
<td>업종</td>
<td>반도체, 광학</td>
</tr>
<tr>
<td>주요사업</td>
<td>열전소자, 반도체 제조, 도매</td>
</tr>
</tbody>
</table>

에이스텍은 1993년 (주)한맥으로 출발하여 열전소자의 국산화 및 관련기기의 보급을 위해 노력하는 회사로서 2000년 10월 독립법인 ACETEC을 창립하여 열전소자 및 관련 장비 전문회사로 거듭 태어나게 되었다. 이제 ACETEC은 국내 열전소자 관련업체의 선두에 서서 각종 LCD, PDP 장비, 반도체 장비(THC, Chiller, 항온수공급기 등)의 국산화 및 기존 사용품의 A/S를 책임지고 있으며 열전소자의 효과적인 온도 제어 방법을 세계 최초로 개발하여 기존 국내 반도체 관련 장비의 성능을 외국장비에 비해 한 차원 높이는 개가를 이룩한 회사이
다. 특히 2002년부터는 가전 사업부를 설립하여 열전소자를 이용한 각 종 상업화 및 가전제품의 개발 또한 성공리에 이루어 가고 있고 폐열 을 이용한 크린 에너지의 회수에도 단연 세계에서 가장 앞서가는 기술력을 인정받고 있다. 88)

<그림 6-3> 에이스텍 제품군(방열팬, 열전발전소자, 소형냉장고, 와인셀러 등)

5. LAIRD Technologies

Laird Technologies는 무선 및 기타 고급 전자 응용 분야를 위한 맞춤형 성능 중심 제품을 설계하고 제조하는 업체로서 미국 미주리주 세인트루이스에 본사를 두고 있으며, 한국에도 2003년에 자사를 설립하여 연구개발 및 무역업을 영위하고 있다. Laird Technologies는 전자파 장해(EMI) 차폐, 열 관리 제품, 기계식 구동 시스템, 신호 무결성 부품, 무선 안테나 솔루션, 무선 주파수(RF) 모듈 및 시스템 등을 설계하고 공급하는 세계적인 시장 선도업체이다.

Laird Technologies는 Laird PLC의 사업부 중 하나로, 델라웨어주에서 설립되었다. Laird Technologies는 EMI 차폐, 열 관리, 무선 안테나 분야의 선도적인 브랜드를 합병하여 설립했다. Laird Technologies는

88) kr.gobizkorea.com/blog/kr_catalog_list.jsp?blog_id=acetec&co_lang=1&group_code=2006
APM, Bavaria Elektronik, Instrument Specialties, R&F Products, BMI, Magnes, Orcus, Warth, Thermagon, Centurion, Cateron, Melcor, RecepTec, Antenex, Steward, Supercool, Aerocomm, Cushcraft, M2Sys, 가장 최근에는 Ezurio와 같은 회사를 인수하여 각 분야에서 성공을 거둔 기업에 그 뿌리를 두고 있다.

열전발전소자와 관련해서는 2013년에 Nextreme Thermal Solutions, Inc. (“Nextreme”)의 지분 100%를 인수하여 열전발전소자의 시장 확대를 위해 과감한 투자를 진행하고 있다. 인수된 Nextreme은 미국에 본사를 둔 개인소유의 회사로서 마이크로 스케일의 열전발전 소자를 연구개발하는 회사였다. 특히 나노 박판 초격자에 대한 특허를 가지고 이를 개발하여 열전소자 관련 연구에 진전을 보인 회사이다.

가. 주요 제품

- TYS 전력 인덕터

TYS 계열 전력 인덕터는 Automotive Electronics Counsel로부터 승인 받은 AEC-Q200 표준을 준수하는 저높이 고성능 솔루션이다. TYS 계열은 DC-DC 전력 컨버터에 사용하도록 설계되었으며 단방향 전기적 흐름을 보장한다.
- LI0201 신호 필터링 페라이트 칩 비드

Laird Technologies는 페라이트 칩 비드 제품군을 확장했다. 이 칩 비드는 실정 면적이 작으므로 소형 및 휴대용 전자 시스템 장치에 이상적이다. 새로 운 LI0201 계열은 디지털 신호 회선용으로 설계된 초소형 모놀리식 EMI 억제 칩이다. 이 제품은 광대역 신호 인터페이스용 저주파인 수백 MHz으로부터 고주파 신호 회선용 GHz 범위에 이르는 넓은 주파수 범위에서 우수한 EMI 잡음 제거 효과는 물론 효율적인 공간 활용률을 제공한다.

- 열전발전소자

Laird의 열전발전모듈은 Annular, CP, MS, OptpTEC™, PolarTEC™, ThermaTEC™, UltraTEC, ZT Series로 구분되며 온도별, 용도별로 매우 다양하게 제공된다.
6. KELK

KELK는 일본에서 1966년 설립된 회사로서 열전 소자를 중심으로 한정밀 열 제어 시스템에서 품질과 기술로 전세계 고객으로부터 신뢰받는 공급 업체이다. 최근에는 열전 발전의 보급·실용화를 목표로 산업폐열 이용을 중심으로 개발 및 실증시험을 진행하고 있다. KELK의 열전발전소자는 3가지 Type의 제품이 있으며 아래와 같다.

① High Performance Type (고출력 타입)
- 전력변환 효율과 출력밀도가 높아 열전발전 장비의 크기를 컴팩트하게 줄일 수 있다.

<그림 6-4> High Performance Type
② Multi Purpose Type (범용 타입)
- 스켈레톤 타입을 적용하여 경제적이면서 열 사이클에 강한 제품.

<그림 6-5> Multi Purpose Type
③ Micro Generation Module (미소열전발전 모듈)
- 고밀도 실장 타입으로 KELK사의 미소 모듈 생산기술을 잘 살린 제품.

<그림 6-6> Micro Generation Module

7. FERROTEC

2008년에는 한국에 페로테코리아를 설립하여 PV solution, Ceramic solution, Quartz solution, Thermal solution, Blade 등의 주요상품을 제공하고 있다.

Silicone Sealing은 온도변화가 심한 환경에서도 탄성을 유지하며, 열전냉각소자가 이슬점 아래에서 사용될 때 발생하는 응축에 대해서 효과적인 Sealing 방법을 제공한다. Silicone Sealing의 사용가능 온도 범위는 -60℃에서 +200℃이다.
8. Alphabet Energy

알파벳 에너지(Alphabet Energy)사는 2009년에 랜스 버클리 국립연구소 내에서 설립되었다.

Alphabet Energy사는 비용이 저렴한 열전발전기 E1을 개발하였다. E1 열전발전기는 낭비되고 있는 폐열을 수집하여 전기로 변환시키는 역할을 수행하게 된다. E1 열전발전기는 폐열을 변환시키기 위해 Alphabet Energy사에서 제공하고 있는 열전물질을 사용한다.
E1 열전발전기는 1000kWe 엔진 한 대당 25kWe의 전기를 생산할 수 있으며, 그로 인해 연간 52,500리터의 디젤연료를 절약할 수 있다. 연료를 절약하는 것은 가장 거대한 레버(lever) 중 하나로 변신할 것 이다. 그 결과, 운영비용을 절약할 수 있게 된다.

9. EVIDENT THERMOELECTRICS (GMZ Energy)

EVIDENT THERMOELECTRICS는 2015년 5월 GMZ Energy의 특허, 장비, 생산 라인 등 전체적인 회사를 인수하여 열전발전기 시장에 적극적으로 진입하였다.
GMZ Energy사는 2006년 Chen과 휴스턴 대학 소속의 동료 연구원인 Zhifeng Ren이 공동으로 설립한 회사로서 약 10년 전부터 열전 재료의 효율성을 비약적으로 촉진하고 재현하기 위하여 나노기술을 사용했다.

2008년에, Chen과 Ren 등의 연구진은 저렴한 공정을 이용하여 열전 냉각기에서 사용되는 재료인 비스무스 안티몬 텔룰르 화합물(bismuth antimony telluride)의 효율을 40% 증가시켰다. 같은 해 사이언스에 발표된 논문에서, 연구팀은 재료를 나노분말로 분쇄하여 벌크 형태로 재구성함으로써 재료를 통과하는 양자의 통로를 비약적으로 지연시켰다. 이러한 방식은 열 누설을 억제하는 한편, 전자의 자유로운 흐름을 가능하게 해주었다. 벌크 형태에서 비용 효율적이고 안전한 함금을 이용한다는 것은 재료가 다양한 응용에 적용될 수 있다는 것을 의미한다.

이러한 발견 이후, Chen과 Ren은 재료의 개발과 상용화에 주력했다. 그러나 열전 시장은 소규모로 거대 구매자를 찾을 수 없었다. 따라서 연구진은 현실에서 재료를 재현할 수 있는 장치를 구현할 필요가 있다고 생각했다. 3년 후, 연구진은 일광으로 가열한 온수 집전기(solar hot-water collector)로부터 전기를 생성하는 장치를 고안했으며, 이러한 장치는 현재 TEG 모듈의 초기 버전이었다.

GMZ Energy사의 열전 발전기(TEG; thermoelectric generator)는 1평 방인치, 1/4인치 두께 모듈로 이루어져 있으며, 자동차에서 배출된 폐열을 자동차들이 추가된 동력을 빌려 사용할 수 있는 전기로 전환시킨다.
TEG에서, 열이 모듈 상층으로 유입될 때 전기가 생성되며, 이후 TEG에 구비되어 있는 반도체 재료를 통하여 보다 더 차가운 쪽으로 이동한다. 이러한 온도 차이 하에서 반도체에서 전자의 움직임은 전기로 추출되는 전압을 생성한다.

그러나 많은 TEGs에서 재료 내 원자의 진동(atomic vibration)은 뜨거운 쪽에서 차가운 쪽으로 열을 누설시킬 수 있다. GMZ사의 방법은 열 누설(heat leakage)을 필수적으로 지연시켜, 많은 열전 재료의 성능을 30~60% 가량 증가시켰다.

또 새로운 TEG는 뜨거운 쪽에서 약 600 ℃(상층)의 온도를 견딜 수 있는 반면, 차가운 쪽(하부 표면)에서 100 ℃를 유지한다. 500 ℃의 온도 구배를 이용하여, 4 제곱센티미터의 이 모듈은 7.2 와트의 동력을 생산할 수 있다. 예를 들면, 자동차 배기관 근처에 설치되어, 이렇게 전환된 전기는 자동차의 교류 발전기(alternator)에 가해지는 부하를 줄이고, 연료비용과 전체 배기가스 배출을 줄이는 등 자동차의 전기적 구성 요소에 동력을 공급할 수 있다.

2014년 6월 GMZ사는 미국 에너지부(DOE; Department of Energy)가 후원하는 150만 달러에 달하는 프로그램의 일환으로 보다 더 큰 TEG로부터 200와트의 동력을 성공적으로 생산했다. 또 GMZ사는 DOE의 900만 달러의 자금을 지원받아 승용차의 연료 경제를 25%까지 개선하는 프로그램을 연구할 예정이다. GMZ사는 조만간 자동차에 자사의 TEGs를 적용할 계획이며, 이러한 시도는 5% 가까운 효율성 개선을 목표로 하고 있다. 89)
<그림 6-9> EVIDENT THERMOELECTRICS사의 열전발전모듈 (TEG-HH-15-1.0)

89) KISTI 미리안, 끓일을 전기로 전환하는 열전 장치, 2014.08.15
제 7 장 결론

열전발전 기술은 에너지 시장에서의 비전을 넘어 향후 IT 기기 독립 전원, 바이오 재생 분야, 로봇 산업 분야, 원자력 분야에 이르기까지 새로운 미래 유망 신시장 창출에도 크게 기여할 수 있어 그 기술적 파급효과는 에너지 산업 전체에 지대한 영향을 미칠 것으로 예측된다.

열전발전 효과를 응용한 TEG는 현재 일부 산업분야에 국한되어 응용되고 있으나 수송 분야에 적용될 경우 산의 질 향상과 천환경 에너지를 강하게 요구하는 미래 산업사회에서 IT, BT, ST, 가전 산업 등 다양한 분야로 확대되어 국가 첨단산업의 한 축이 될 것이다.

차량용 TEG 기술을 기존 내연기관 차량(승용 가솔린차, 승용 디젤차, 상용차)은 물론 미래형 자동차인 하이브리드 차량에도 적용이 가능한 기술로 CO2 배출규정을 만족시키며 연비가 좋은 자동차를 생산하여 해외시장 경쟁력 확보도 가능하다. 또한 저온부터 중고온 영역의 폐열이 발생하고 있는 발전소, 철강, 석유화학 등 기간산업 분야의 폐열 회수 시스템에 활용함으로써 에너지 사용 효율을 획기적으로 증대시키고 CO2 배출을 감소시키면서 환경문제의 해결에 적극적으로 기여할 수 있다.

인공위성·우주선용 보조전원, 군사용, 휴대용, 극지 전원 공급용, 인공장기용 전원 등 일반적인 발전 시스템의 적용이 불가능하거나 장기간 안정적인 전원 공급이 요구되는 특수발전 분야에 활용하여 우주항공 분야, 국가안보 관련분야, 모바일 기기 관련분야 및 의료 기기분야 등
의 기술 발전에 크게 기여할 것으로 전망 된다. 90)

열전소자 개발을 위한 시사점으로는 첫째, 정부의 적극적인 관심과 투자가 필요하다. 열전변환 기술이 상용화되면서 자동차의 경우 5% 에너지 소비 효율 향상이 기대되는 등 미래 에너지 강국이 되기 위해 국내 열전소재 연구개발에 대한 법정부적 지원이 필요하다. 연구개발 기업에 대한 지원강화, 연구 성과물에 대해 최종 소비자들의 구매를 촉진할 수 있는 정책의 수립 및 운영 등 에너지 절감을 위한 소재개발에 기업들이 자발적으로 참여하도록 유도하는 환경을 조성해야 한다.

둘째, 지속적인 기술개발의 필요성이다. 혁신적인 소재 개발을 위해 유기소재만이 아니라 무기, 금속 소재 등에 대한 연구를 강화하고, 융복합 소재 기술에 대한 연구개발이 중요하다.

셋째, 반도체와 나노기술의 발달에 따라 전자부품은 소형화뿐만 아니라 성능 향상과 집적화가 함께 이루어진다. 집적화 및 성능향상은 전자부품의 발열문제를 수반하고 있어 이를 해결하기 위해 중요한 기술적 도전과제로써 지속적인 연구개발이 필요하다.

넷째, 열전 관련 연구의 수행 및 지적재산권의 확보이다. 열전소자는 앞으로 그린 에너지 산업의 급격한 발전과 더불어 그 시장이 증가할 전망이다. 향후 열전소자의 시장성을 고려할 때 국내에서도 많은 열전 관련 연구를 진행하고 더 많은 지적재산권을 확보해야 할 것이다.

90) 공업화학전망, 열전 에너지 변환기술, 2013
다섯째, 열전소자 기술개발이다. 현재 열전소자로 널리 사용되고 있는 Bi2Te3는 재료의 희귀성으로 인해 산업화 기술로서의 활용에 어려운 측면이 있다. 이러한 이유로 최근에는 Bi2Te3를 대체할 수 있는 새로운 열전재료로 실리콘 열전소자 기술이 세계적으로 활발히 연구되고 있다. 그동안 열전특성이 미미한 것으로 여겨져 왔던 실리콘을 나노구조로 활용하면, 현재 상용화된 Bi2Te3에 비교할 수 있는 열전특성을 보여 앞으로 급속한 발전이 예상된다. 특히, 반도체 설비 및 공정기술이 세계적인 수준으로 발달된 우리나라의 열전소자 연구를 위한 매우 유리한 여건을 갖고 있다. 그러므로 실리콘을 기반으로 한 저비용, 고효율의 열전소자를 성공적으로 개발하면 열전소자 분야에서의 원천기술 확보 및 초기시장 점유에 매우 유리한 입지를 선점할 수 있다. 91)

91) 한국전자통신연구원, 열전소자 시장 및 개발동향, 2014
<참고 문헌>

1. 한국전자통신연구원, 열전소자 시장 및 개발동향, 2014.02.15. 전황수, 황문규 전자통신동향분석. 제29권 제1호 통권145호 (2014년 2월) pp.104-112
2. 한국전자통신연구원, 열전소자의 적용 동향(Application trends in thermoelectric materials) 2015.02.01. 전황수, 문승언 전자통신동향 분석. 제30권 제1호 통권151호 (2015년 2월) pp.144-153
3. 공업화학전망, 열전 에너지 변환기술, 2013.08.15. 김일호 공업화학 전망 = KIC news. 제16권 제4호 (2013년 8월) pp.18-26
4. 한전경제경영연구원, 열전발전 시스템 기술개발 동향, 2014
5. KISTI, 미이용 열을 활용하는 열전발전기술, 2015
6. KISIT, 열전변환 성능이 높은 전도성 고분자막, 2015
7. KISTI, 열전재료 연구의 최신동향, 2014
8. KISTI, 최고의 열전효과를 보이는 반도체, 2014
9. KISTI, 저비용 고성능 열전재료, 2014
10. KISTI, 높은 전기전도도, 열전력의 폴리머 열전재료, 2014
11. KISTI, 진공 밀봉 열전변환모듈의 기술현황, 2013 오창섭 대전 : 한국과학기술정보연구원
12. KISTI, 열전발전기술의 개발동향, 2013 오창섭 대전 : 한국과학기술정보연구원
13. 월간 과학과 기술, 나노소재의 열전기술 응용, 2013.11.30. 이종수 과학과 기술 = The Science & technology. 통권535호 pp.70-73
14. 한국에너지기술평가원, 온실가스감축기술 전략로드맵, 2011
15. 한국전기연구원, 탄소나노소재의-Wonderland, 2015
17. 녹색기술센터, 에너지 하베스팅, 나노 기술을 만나다, 2015
18. 한국에너지기술평가원, 에너지기술 이노베이션 로드맵, 2014
20. KISTI 미리안, 인쇄하여 만든 유연한 열전변환소자, 2011.10.04.
23. KISTI 미리안, 폐열을 전기로 전환하는 열전 장치, 2014.08.15.
25. 야노경제연구소, 진동열전발전 디바이스 시장에 관한 조사결과, 2011

<참고 웹사이트>
1. www.heatrecar.com
2. www.nextbigfuture.com
3. www.energyharvestingjournal.com
4. www.idtechex.com
5. www.powerpractical.com
6. www.lairdtech.com
7. www.kelk.co.jp
8. www.ferrotec.co.kr