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ABSTRACT

With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them 
is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize 
social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial 
intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect 
malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning 
the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise 
(stopwords) and preserving important features in consideration of the machine language and natural language characteristics of 
the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and 
Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to 
make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the 
effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied 
and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating 
Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.
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1. INTRODUCTION

With the development of network communications 
technologies and the increasing number of devices con-
nected to the networks, the number of cyber threats tar-
geting them has also increased. Not only have the number 
of cyber threats increased, but they are also sophisticated 
and gradually accelerating in quantity using Machine 
Learning (ML)/Artificial Intelligence (AI) and automation 
tools. In line with the growth in cyber threats, network se-
curity technologies naturally have been studied to protect 
information assets from various cyber threats. Various 
security devices, such as Intrusion Detection System (IDS), 
Intrusion Prevention System (IPS), Unified Threat Man-
agement (UTM), Enterprise Security Management (ESM), 
and Security Information Event Management (SIEM) are 
established and operated for a multi-stage defense system. 
In recent years, moreover, advanced technologies using 
ML and AI are especially being studied, not only to de-
tect cyber-attacks but also to automate the classification 
of security events from various network security device. 
However, most of these technologies cannot be used in 
real environments because there are many cases where 
AI models verified with high performance in previous 
research show low accuracy in real environments. There 
are two main reasons for this. One is that most existing 
studies do not consider real environments. They mostly 
use open data sets, which are usually simulation data or 
outdated data sets that do not fit the current protocol 
and environments. Therefore, such studies show high 
performance in the given experimental data, but inevita-
bly show low performance when testing data that is not 
used for learning in a real environment. The other issue 
is uniformly preprocessing methods that do not consider 
the characteristics of the data. Network packets have char-
acteristics of both natural language (unstructured data) 
and machine language (structured data). Some of them 
have only natural language (video, music, letters), others 
have only machine language (IoT device signals, format-
ting files), and others have both. In particular, in the case 
of web-related packets, since there are various types in-
cluding source code, file path, personal information, and 
infection signals related to malicious code, appropriate 
preprocessing methods that understand their characteris-
tics are required, but most existing studies do not consider 
this. 

In this research, we focused on the absence of a pre-
processing method. To make an AI model for real-world 
monitoring, this study proposes a novel data preprocess-

ing method consisting of three steps. The three steps 
consist of (1) Preserving significant special characters, (2) 
Generating a stopword list, and (3) Class label refinement. 
Firstly, by defining significant special characters to be pre-
served, we can prevent the semantic change that occurs 
during preprocessing and preserve the performance of the 
ML/AI model. A detailed description of each step is pro-
vided in Section 3. Generating and adopting stopwords 
is also an important task in the packet preprocessing 
since the features not related to the label are also major 
impediments to model training. We defined appropriate 
stopwords in consideration of the characteristics of natu-
ral language and machine language. Furthermore, we ad-
opted them to the packet. Finally, Class label refinement 
is the process of correcting incorrect labels. In Security 
Operating Center (SOC), because the security monitoring 
agent makes a final decision to classify benign/malicious 
packets, the agents can make a wrong decision by ana-
lytical ability, condition, timing, and even mistakes. This 
misjudgment is a major reason of low performance when 
training an AI model by labeling the same data differently, 
so it is necessary to correct it. After conducting refine-
ment, we also define stopwords. We summarize the main 
contributions of this paper as follows:

•	 Data consistency: It is possible to ensure a consistent 
data set through label refinements so that the pro-
cess can correct incorrect labels caused by human 
misjudgment.

•	 High usability in real-world: The proposed method 
makes it possible to produce installable and operable 
AI models with high performance in the real world 
by making high-quality training data.

•	 Generalization: It can be used in combination with 
other methods that utilize the payload of the packet.

The performance of the models applied proposed 
method is evaluated in terms of accuracy, especially under 
the real-world SOC environment with live network traf-
fic. The rest of the paper is organized as follows. Section 2 
provides related work. Section 3 describes our packet pre-
processing method for ML/AI, and Section 4 discusses the 
evaluation effectiveness of the proposed method. Finally, 
we summarize our results and conclusions in Section 5.

2. RELATED WORKS

2.1. Intrusion Detection with ML/AI Techniques
To protect information assets from cyber threats, net-
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work intrusion detection has been studied for a long time. 
There are many network security systems (i.e., NIDS/
NIPS, UTM, ESM, SIEM, firewall [FW], and web appli-
cation firewall [WAF]) that are developed and installed 
at the entrance of an internal network. They detect and 
alert to known cyber threats based on detection rulesets 
(signature or pattern) (Cisco, 2018; McAfee, 2020; Open 
Information Security Foundation, 2020). Network se-
curity analysts have to make detection rules rapidly and 
properly, because without rules, even if it is a known at-
tack, it cannot be detected, and the damage from them 
can spread. However, as cyber threats are increasingly so-
phisticated, making the detection ruleset rapidly is a chal-
lenging task for network security analysts. To overcome 
the inherent limitation of a ruleset-based system, ML/AI 
techniques have recently been utilized to enhance known 
attack detection as well as detect unknown threats without 
a ruleset. Well established ML/AI models outperformed 
conventional ruleset-based systems in terms of perfor-
mance (e.g., accuracy, precision, recall, and F1-score) 
(Almseidin et al., 2017; Sommer & Paxson, 2010). Besides 
this, a model can be also utilized for anomaly detection, 
which learns benign states and detects behaviors that 
deviate from it. The study by Li et al. (2016) introduced 
MVPSys, developed by them. It is an efficient system to 
reduce false alarms based on a semi-supervised approach. 
Recent research by Medjek et al. (2021) even considers 
fault-tolerant IDS using AI algorithms to protect vulner-
able IoT environments against cyber threats. Furthermore, 
an interpretable classification method (e.g., XAI) (Wang 
et al., 2020) has been studied for understanding and inter-
preting how the trained ML/AI model classifies various 
traffic as benign or abnormal.

2.1.1. Packet Preprocessing
Preprocessing means manipulation of data, such as 

dropping, filtering, transformation, normalization, inte-
gration, cleaning, and handling of missing values, and so 
on, before it is used to ensure or enhance performance, 
and this is an important step in the data process. In net-
work packet analysis, since the packet structure has vari-
ous types, the process should be properly chosen accord-
ing to the purpose. Hence many existing studies related to 
packet analysis have used a combination of preprocessing 
methods from simple encoding (e.g., base 64, UTF8) to 
word embedding (e.g., Word2Vec (Mikolov et al., 2013), 
GloVe (Pennington et al., 2014), and FastText (Bojanowski 
et al., 2017)) to get the results they want (Lin & Chen, 
2021). As well, because the packets are used to freely 

deliver messages according to predefined protocols and 
machine language, they have the characteristics of natu-
ral language and machine language. Thus we can apply 
natural language process (NLP) or text mining techniques 
for packet preprocessing, and they have already been ap-
plied to packet analysis since the early 2000s. Word2Vec 
is a representative NLP technique. It learns word term 
relation in a large text corpus and can be applied to vari-
ous fields. It can be used in packet processing for security 
monitoring. It is used to learn the relationship between a 
word’s composition and order in true-positive (TP)/false-
positive (FP) packets to distinguish them. There are vari-
ous studies applying it, such as Packet2Vec (Goodman et 
al., 2020) and TLS2Vec (Ferriyan et al., 2022), which have 
been studied and utilized in security monitoring. Term-
Frequency-Inverse Document Frequency (TF-IDF) is also 
a technique often used in NLP. 

In packet processing, a packet is treated as a document, 
and a word (or a sequence of bytes or a term) extracted 
from the packet through a tokenizer or chunking algo-
rithms is treated as a word. The study by Yang et al. (2021) 
proposed a distinguish method combining TF-IDF and 
ML such as CNN and AdaBoost for classifying malicious 
encryption traffic and normal traffic. Apart from the 
Principal Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA), the Co-clustering algorithm 
has also been applied as a data dimensionality reduction 
technique by clustering records and fields (Banerjee et al., 
2005; Madeira & Oliveira, 2004). These techniques are 
also used for preprocessing of anomaly-based intrusion 
detection. Research by Kakavand et al. (2016) introduced 
TMAD (Text Mining-based Anomaly Detection) using 
n-gram text categorization (TC) and TF-IDF. They make 
a feature through the n-gram TC and TF-IDF and show 
high detection rates through it. In this way, most existing 
studies use the NLP or text mining techniques for feature 
extraction from simulation datasets. Yet most of these 
models performed with a high performance in their test 
environments but performed with low performance in 
the real environment where various types of packets ex-
ist, because a batch of pre-processing methods are applied 
without considering the characteristics of various types 
and types of packets. In addition, since they use a natural 
language-based dictionary and not a security-specialized 
one, they are not also suitable for packet preprocessing. In 
recent years, many studies using end-to-end learning that 
does not consider such preprocessing have been made, 
but they are based only on some simulation data, not real 
packets captured in the real world (Chen et al., 2017; Le et 
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al., 2020).

3. PROPOSED METHOD

Data processing is one of the most important tasks to 
build high performance ML/AI works. However, the data 
from security devices, especially IDS/IPS events, usually 
contain various types of payloads such as predefined ma-
chine language, natural language, and even both. There-
fore, the process is more burdensome and complex than 
other structured data such as CSV or JSON format, and 
the learning effect of ML can be maximized only by using 
a data processing method that considers these character-
istics. Moreover, label inconsistency, which is a critical 
attribute for ML/AI tasks, easily occurs because there are 
many unexpected variables, including a wide range of ca-
reer (i.e., ability) of human agents, different decision stan-
dards and timings, complex SOC situations, and so on. To 
decrease these negative biases from the security data, we 
proposed the following three steps as in Fig. 1: preserving 
significant special characters, generating a stopword list, 
and class label refinement. More details are detailed in the 
section below.

3.1. Preserving Significant Special Characters
Different from natural language, some special characters 

have important meaning (e.g., file indicator, data separator, 
parameter, or some evidence of threats) in payload. They 
can describe relationships between two different terms and 
are used as a delimiter for a specifically formatted string. 
That is, if these characters are deleted according to the 
same process as NLP, the original meaning of the payload 
will be faded or lost; consequently, it has effect on the low 
performance of the AI model. As a result, special charac-
ters with important meanings should be preserved and 
suitable methods for dealing with them must be consid-
ered. We define the significant special characters to be pre-
served which are related to cyber threats or have important 
information, and replace with white spaces all other special 
characters except for them. Table 1 shows ten significant 
characters with usage examples in payload. For instance, a 
colon (:) is generally used as a delimiter that distinguishes 
keys and values in the key-value structure, so that without 
it, the key and the value are difficult to distinguish; how-
ever, it is easily eliminated in text mining. Moreover, at (@) 
is also a typical special character used in email addresses. It 
can give us some information of email related to phishing, 
malicious file distribution, and other abuse behaviors; thus 
it needs to be kept with an original form. 

Process

Security events AI/ML dataset

Preserving significant
special character

Generating
stopword list

Class label
refinement

Source Result

Fig. 1. �Whole process of this 
research. AI, Artificial 
Intelligence; ML, Machine 
Learning.

Table 1. Pre-defined significant special characters and usages

Character Description (Unicode) Usage in payload

@ At sign (U+0040) @hotmail.com, @gmail.com

\ Backslash (U+20A9) C:\User\passwd

- Hyphen (U+2010) Down.dll-biu, x-installer.exe, or 1=1 –

: Colon (U+003A) {id:xxx}{passwd:xxx}

% Percent (U+0025) %20%23

_ Underbar (U+005F) _0X, /system_get/

. Period (U+002E) Show.asp, shime.exe

/ Solidus (U+002F) /etc/passwd

? Question Mark (U+003F) Index.php?option=com

$ Dollar Sign (U+0024) cmd=$var
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These significant characters are used when defining 
stopwords in Section 3.2. Terms with predefined special 
characters, as well as words containing special characters, 
should not be deleted in order to preserve their meaning. 
More details about this are explained in Section 3.2.2.

3.2. Generating Stopword List
The purpose of generating stopwords in terms of 

security classification is to both eliminate noise and pre-
serve core components to understand the meaning of 
the payload. It is a very important process because the 
method helps to maximize the effectiveness of learning 
when learning the meaning and relationship of terms, 
and it is a method often used in NLP. However, unlike the 
case of general NLP, the payload is a mixture of machine 
language and natural language, and its form and type are 
very complex, so a domain-specific processing method is 
required. In this section, we propose the novel method of 
generating a stopword list considering the characteristic 
of the packet. The proposed method introduced in this 
section consists of two parts as shown in Fig. 2: genera-
tion and adoption. In the generation part, stopwords are 
defined by calculating the weights of words and removing 
statistically significant words. The adoption part describes 
how to apply the stopwords generated in the generation 
part. We describe the detail of parts in the section below, 
respectively.

3.2.1. Term Weight Calculation
To eliminate meaningless terms, we should quantify 

the importance of each term included in payloads. We can 
realize the term’s importance and select stopwords through 
the quantified value. TF-IDF is a well-known method to 
calculate the weights of the terms. It is a traditional but 
very efficient method. We also use modified TF-IDF to 
calculate the weight of the terms within each event. Here 
is a detailed modified TF-IDF as follows: 

 𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) =  𝑓𝑓�𝑡�
|𝑑𝑑| 

 

 
  

	 (1)

where ft,d is the raw count of a term as word t in a payload 
of security event (i.e., document |d|) and |d| is the length 
of document (i.e., all the number of terms in the docu-
ment). We should consider that all payloads have different 
lengths, and the weights of terms should be calculated for 
all payloads. So, by dividing the frequency of terms in the 
document into the length of the document, 

 
 𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑡 𝑡𝑡) =  |𝐷𝐷𝐷
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where |D| is total number of documents D, |{d ∈ D: t ∈ d}| 
is the number of payload where the term t appears, and 
the denominator is adjusted with 1 to prevent division-by-
zero. Also, log is applied to prevent bias that occurs when 
the number of documents is large. Finally, TF-IDF is cal-
culated by multiplying TF by IDF values as follows: 

 
 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) =  𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) ∙𝐼𝐼𝐼𝐼𝐼𝐼 (𝑡𝑡𝑡 𝑡𝑡)  

  
	 (3)

After the calculation, every term in each payload has an 
importance score. And then, by adding all the TF-IDF val-
ues for each term, we can get the weights of the term t in 
all payloads calculated such as in Equation 4. Fig. 3 shows 
all processes in this section as a table.
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3.2.2. Security-biased Term Elimination
After finishing term weight calculation, stopwords are 

determined according to threshold k. Following the previ-
ous step, the large weight of the term means that the term 
has a large effect on the payload. That is, if the weight of 
a term is greater than or equal to k, it can be classified 
as a meaningful term, and otherwise it is classified as a 
stopword. Equation 5 shows this process, where k can be 
determined by the experience of the human agent or any 
other standard (e.g., Zipf’s law). 

 
 �𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑡𝑡𝑡 𝑡𝑡) ≥ 𝑘𝑘

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   

 
  

	 (5)
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Generating
stopword list

Generation Adoption

Word weight
calculation

Security-biased
word elimination

Selective stopword
adoption

Stopword
list

Fig. 2. �Process of generating 
stopword list.
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Subsequently, we also remove meaningful terms, because 
our purpose is to define the meaningless terms. A mean-
ingful term means that it can relate to labels or be helpful 
to distinguish the payload. Consequently, it cannot be a 
stopword. For eliminating these meaningful terms, we 
classified the entire payloads into two groups by labels 
called set B (benign) and set M (malicious). To extract 
terms from each classified group, our own tokenizer is 
used. The tokenizer separates terms based on spaces and 
special characters, except for significant characters de-
fined in Section 3.1. Then, by comparing the extracted 
terms from each group, we eliminate terms that only ap-
peared in one of the two groups. Equation 5 shows the 
process of extracting candidate terms, where Tfp, Tfn is the 
set of a word term (t) in a payload (i.e., document d in M 
or B). M and B are sets of benign and malicious payloads, 
respectively. 

 
 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠�� −𝑇𝑇 �� 𝑠�

𝑇𝑇�� = {𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡
𝑇𝑇�� = {𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡  

 

 
  

	(6)

3.2.3. Selective Stopword Adoption
As mentioned in the previous section, the characteris-

tic of natural language and machine language should also 
be considered when applying stopwords in packet prepro-
cessing. Instead of simply removing them, like NLP, they 

should be replaced or eliminated depending on the type of 
terms. Stopwords generated according to Section 3.2.1 and 
3.2.2 can be divided into two types: terms including sig-
nificant characters or consisting of significant characters, 
called a mixed type, and terms without any other special 
characters, called a pure type. These two types are applied 
in different ways. In case of the pure type, string match 
and replace algorithm is used. If the given term from the 
payload is a pure type, the stopword can be replaced with 
white space through 100% string matching. For example, 
if we have a stopword ‘pen’ and two given terms ‘pen’ and 
‘pencil’ extracted from the payload, then, since the given 
term ‘pen’ is matched to stopwords ‘pen,’ the given term 
‘pen’ is eliminated from the payload. But ‘pencil’ has the 
extra string ‘cil’ against stopword ‘pen’; so, it remains. In 
case of a mixed type, substring matching and replace al-
gorithm is used. If the given term is a mixed type, then we 
use substring match matching to find terms that contain 
stopwords. For example, let us suppose ‘@gmail.com’ is the 
stopword and term ‘good@gmail.com’ is extracted from 
the payload. Then, we use the substring match and check 
whether stopwords are included in the given term, be-
cause ‘good@gmail.com’ has significant special character 
‘@.’ In this case, since ‘@gmail.com’ is a substring of ‘good@
gmail.com,’ ‘good@gmail.com’ is eliminated. In natural 
language, there are cases where the meaning is changed 
due to the difference of only one character (e.g., book, 

[Malicious event TF/IDF matrix]

[Unlabeled event TF/IDF matrix]

Similarity calculation=
M UEi j

Mi UEj

Word term

Malicious event

M
1

M
n

UE
1

UE
2

UE
m

Word term

Unlabeled event

Term
1

Term
2

Term
3

Term
4

Term
k

Term
1

Term
2

Term
3

Term
4

Term
k

Fig. 3. Examples of TF-IDF matrices. TF-IDF, Term-Frequency-Inverse Document Frequency.
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cook, hook, and so on), whereas in ML, similar formats 
often have similar meanings. The ‘@gmail.com’ aforemen-
tioned is an e-mail address format, so ‘good@gmail.com’ 
and ‘nice@gmail.com’ are different terms, but the fact that 
they are e-mail addresses is the same, and they have the 
same special characters and format. In this way, removing 
words that have the same pattern as stopwords helps AI-
model training. Table 2 is pseudo code about stopword 
adoption.

3.3. Class Label Refinement
The purpose of the class label refinement is to cor-

rect mislabeled data by various situations in SOC. In data 
such as text or images, labels are clearly distinguished, 
whereas payload analysis in monitoring may have differ-
ent labels depending on the analyst or situation. Hence, 
it is an important thing to minimize mislabeling so that 
the characteristics of each label can be revealed clearly 
and the intrusion detection model can be trained well. In 
SOC, mislabeling is inevitably caused by changes in the 
decision basis over time, differences in the monitoring 
agent’s analysis ability, and even simple mistakes. Even 
where there is the same payload of security events or raw 
traffic, different analysts and timing make it possible to la-
bel differently. To solve these problems, label refinement, 
which is data-driven labeling, is used in this paper based 
on similarity measures. Similarity analysis is performed 

based on payloads previously clearly labeled as malicious 
by the security monitoring agent, and payloads with simi-
larity above a threshold are classified as true-positive and 
false-positive otherwise. To compare a similarity between 
verified payload and other payloads, firstly all terms in the 
payload are scored by the TF-IDF method used in Sec-
tion 3.2.2. But, unlike in Section 3.2.2, we divide the fre-
quency of the term into the mode value of terms, not total 
number of terms, in a payload in this section, because the 
similarity comparison between two payloads do not need 
to consider the other payloads. That is, TF is as follows: 

 
 𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) =  𝑓𝑓�𝑡�

max {𝑓𝑓��𝑡�: 𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡 
 

 
  

	 (7)

Each payload is considered as each document and each 
term extracted from the payload is considered as each 
term. After the calculation, all terms in the payload have 
the importance score, and TF-IDF matrices for all payload 
are formulated. Using the values on the matrix as shown 
in Fig. 3, the similarity between payload, especially mali-
cious events vs. unlabeled events, is compared based on 
similarity measures such as cosine similarity, Minkowski 
distance, and Mahalanobis distance.

The label of the unrefined event is lastly determined 
based on the similarity value with a threshold (σ) which is 
examined by know-how from the agent experience as fol-
lows: 

 
 𝑢𝑢𝑢𝑢� � 𝑖 �

1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), 𝑖𝑖𝑖𝑖𝑖𝑖𝑖�,� >  𝜎𝜎𝜎
0(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔𝑛𝑛), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜  

 

 
  

	 (8)

where el is the determined label for an unrefined event 
e, m is a malicious event, Sm,c is a similarity value (e.g.,  
cosine similarity= 𝑚𝑚 𝑚 𝑚𝑚

‖𝑚𝑚‖‖𝑒𝑒‖ 

  

), and σ is a threshold defined  
 
by the human agent. In other words, all events will be 
classified as malicious if the similarity with the malicious 
events is over σ; otherwise, it will be grouped to benign.

4. EXPERIMENT AND VERIFICATION 

To verify the feasibility of the proposed method, we 
prepare massive IDS events as a dataset for the evaluation, 
in cooperation with a real-world SOC. We utilized actual 
security events collected from network security device 
IDS/IPS installed in the SOC. The dataset consists of vari-
ous types of signature-based IDS/IPS events numbering 
more than 100 types, excepting threshold-based events 
such as scanning or flooding. Moreover, to apply the pro-
posed method, only security events with payload encoded 

http://www.jistap.org

Table 2. Pseudo-code of stopword adoption

Input: �Significant Special Characters C, Stopwords S, Wordset 
segmented from the payload Wi

Output: Wordset Wo removed stopwords

Wo ← Φ
for word in Wi
	 if word contained c ∈ C then
		  i = 0
		  for s in S
			   if IsSubstring(word, s) then 
				    break
			   i = i+1
		  end for
		  if i == len(S)
			   Wo ← Wo ∪ word 
	 else
		  if word ∉ S then
			   Wo ← Wo ∪ word
		  else
			   continue
		  end if
	 end if
end for
Return Wo
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as ASCII values were selected. The detail of the dataset is 
shown in Table 3.

The dataset basically includes 12 features, such as IP 
(source, destination), port (source, destination), protocol, 
direction, packet size, encoded payload, decoded payload, 
attack type, time, and class. First, the terms are extracted 
from payloads through our own tokenizer after defin-
ing the significant characters following Section 3.1. As 
can be seen in Table 2, we extracted 237,949 terms from 
1,1864,110 payloads, calculated TF-IDF values according 
to Section 3.2, and sorted them in descending order, called 
set U. To find and remove class-biased terms from set 
U, we count the frequency of term appearances for each 
label. As a result, label unique terms (TP: 289 terms, FP: 
11,576 terms) were extracted from true-positive and false-
positives, respectively. At this time, we segmented the sen-
tences using our own tokenizer used to TF-IDF. And then, 
we should also determine the threshold k to eliminate 
meaningful terms. In this research, the k is determined 
following Zipf’s law (Gabaix, 1999) to distinguish between 
meaningful and meaningless terms. By considering the 
frequency appearance and the ratio of appearances for 
each term, we can decide an appropriate threshold value k 
following Equation 9. In order to exclude high-frequency 
words from the stopwords, after sorting in descending or-
der by word frequency, all terms with indices from 1 to k 

were deleted from stopwords; we found the point k where 
it exceeds 90% by calculating the cumulative distribution 
function of word usage frequency. 

 
 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓𝑓∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �

���
∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �
���

≥ 90%}  

 
 

	 (9)

Also, although not introduced in Section 3, we also ex-
cluded terms with a frequency of less than 100 from stop-
words because most of them are one-time occurrences. 
After removing the label biased terms, the number of 
members in set U is 226,084, the number of terms with 
a frequency of less than 100 is 976, and the value of k is 
5,879. In this progress, we finally defined a total of 12,052 
terms as stopwords. Table 4 shows the summary of stop-
words generation. 

Finally, following the experiment for identifying the 
effectiveness of label refinement in Section 3.3 based on 
decoded payload, we select 203 malicious security events 
verified by humans who worked in the real-world SOC 
carefully and calculate similarity between them and the 
other events. In this process, we determine the similar-
ity measure and threshold by cosine similarity and 80%, 
respectively. To experimentally find the most appropriate 
similarity threshold, we select 10 types of security events 
with the highest frequency appearance and surveyed the 
consensus rate of human agents for true-positive events 

Table 3. Detail information of IDS dataset before label refinement

Character Description (Unicode) Usage in payload

Provider Real-world SOC Name is blinded

Period 2017.01.01-2018.12.31 2 years

Type 123 signatures ASCII encoding based security events (e.g., web.)

Size 1,186,110 events Malicious: 0.0002%, Benign: 1,185,907 (99.9998%)

Class Malicious and Benign Verified by agents

Feature 12 kinds IP, Port, Payload, etc.

IDS, Intrusion Detection System; SOC, Security Operating Center.

Table 4. Change in word count by step

Step Count

# of all terms 237,949

# of class biased terms 11,865 (TP: 289/FP: 11,576)

# of terms terms with a frequency of less than 100 976

# of terms with term weight greater than k 5,879

# of stopwords finally selected 12,052

TP, True-Positive; FP, False-Positive.
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modified labeling, according to thresholds which were 
varied in 5% increments from 60 to 90, and draw the 
graph; According to Fig. 4, we can see the inflection point 
of graph at 80%. That is, at a threshold smaller than the 
inflection point, security events are not converted to true-
positive, and at a threshold higher than the inflection 
point, too many security events are converted to true-
positive. Accordingly, we determined the threshold to 80% 
and subsequent experiments were performed.

As can easily be seen in Table 5, there is a significant 
change in the number of security events after label refine-
ment. About 132,000 benign events are transformed as 
malicious events. Totally, the dataset is reorganized con-
taining 88.84% of benign events (i.e., about 10% decrease) 
and 11.16% of malicious events increased about 65,000% 
from the original dataset. By refining labeling, we can 
keep the label consistent and solve the imbalance of train-
ing data.

We conducted an experiment to prove the performance 

of each step. To demonstrate our method, we generated 
a simple DNN model by learning the data constructed 
through each step. Table 6 is a confusion matrix showing 
the test results of the model trained through each data. It 
shows the effectiveness of each step. In Experiment 1, pre-
processing was not performed at all, and in Experiment 
2, preserving significant characters and stopwords were 
performed together. The two methods are closely related, 
so we tested them together. Finally, in Experiment 3 label 
refinement was performed. The insufficient TP training 
data set was supplemented by oversampling, and a test was 
conducted with 10,000 recently detected security events in 
SOC. To make up for the insufficient TP data, we generat-
ed 1,000 TP data through repeated oversampling. The ex-
periments show that all metrics except precision improve 
sequentially as each step is applied. Experiment 3 has the 
highest score in accuracy, recall, and f1-score. Through 
this, we can show the superiority of the proposed method. 
Experiments 1 and 2 showed 100% precision due to overs-
ampling to replenish for insufficient TP data, whereas in 
Experiment 3, after label refinement, the AI model was 
unable to predict the TP labels of some data due to the 
increase in the type and number of TPs. This is a problem 
that would not have appeared if there were enough TP 
data in advance. Since it is independent of the purpose of 
this experiment, we did not deal with it in this paper.

5. CONCLUSION

In this research, we proposed the network packet 
preprocessing method to build a high performance AI-
model to be operated in in real-world SOC. To make a 
high-performance enough AI-model to be applied to the 
real SOC, a proper packet handling method is required, 
because the packets mix various formats such as machine 
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Fig. 4. Consensus rate according to the similarity threshold.

Table 5. Comparison of original and refinement dataset

Label Before After Note

Malicious 203 (0.0002%) 132,391 (11.16%) About 65,000% increase

Benign 1,185,907 (99.9998%) 1,053,719 (88.84%) About 10% decrease

Table 6. Change of the number of dataset

Experiment no. Experiment Accuracy Precision Recall F1-score

1 None 99.43% 100% 94.60% 97.23%

2 3.1 & 3.2 99.70% 100% 97.08% 98.52%

3 3.1 & 3.2 & 3.3 99.79% 99.30% 98.61% 98.95%
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and natural language. To enhance the performance of the 
AI model, we suggested a security-specified packet pre-
processing method consisting of preserving significant 
special characters, generating a stopword list, and class 
label refinement. The evaluation was performed in terms 
of identifying the effectiveness of these three steps; fur-
thermore, we verified by comparing the performance of 
the models generated through the training data to which 
the proposed method was applied, and not. We were able 
to verify the superiority of the proposed method through 
the performance with accuracy measures; it was achieved 
with high F1-scores, such as 98.95%, which is 1.7% more 
higher accuracy over those that did not. For future work, 
we will improve our similarity measure using label refine-
ment, extract stop, and critical characters. Moreover, we 
will try to apply a security specified language model such 
as GPT (Generative Pre-trained Transformer) (Brown et 
al., 2020) or BERT (Bidirectional Encoder Representations 
from Transformers) (Devlin et al., 2019) for embedding to 
enhance the AI-model.
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