
© Taewoong Kwon, Joonwoo Myung, Jun Lee, Kyu-il Kim, Jungsuk Song, 2022 143

RESEARCH PAPER
J Inf Sci Theory Pract 10(Special): 143-153, 2022

Received: April 27, 2022	 Revised: May 5, 2022
Accepted: May 17, 2022	 Published: June 20, 2022

*Corresponding Author: Jungsuk Song
 https://orcid.org/0000-0003-1755-8636

E-mail: song@kisti.re.kr

All JISTaP content is Open Access, meaning it is accessible online
to everyone, without fee and authors’ permission. All JISTaP content
is published and distributed under the terms of the Creative

Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). Under
this license, authors reserve the copyright for their content; however, they permit
anyone to unrestrictedly use, distribute, and reproduce the content in any medium as
far as the original authors and source are cited. For any reuse, redistribution, or
reproduction of a work, users must clarify the license terms under which the work
was produced.

https://doi.org/10.1633/JISTaP.2022.10.S.14eISSN : 2287-4577 pISSN : 2287-9099

http://www.jistap.org
Journal of Information Science Theory and Practice

ABSTRACT

With the development of networks and the increase in the number of network devices, the number of cyber attacks targeting them
is also increasing. Since these cyber-attacks aim to steal important information and destroy systems, it is necessary to minimize
social and economic damage through early detection and rapid response. Many studies using machine learning (ML) and artificial
intelligence (AI) have been conducted, among which payload learning is one of the most intuitive and effective methods to detect
malicious behavior. In this study, we propose a preprocessing method to maximize the performance of the model when learning
the payload in term units. The proposed method constructs a high-quality learning data set by eliminating unnecessary noise
(stopwords) and preserving important features in consideration of the machine language and natural language characteristics of
the packet payload. Our method consists of three steps: Preserving significant special characters, Generating a stopword list, and
Class label refinement. By processing packets of various and complex structures based on these three processes, it is possible to
make high-quality training data that can be helpful to build high-performance ML/AI models for security monitoring. We prove the
effectiveness of the proposed method by comparing the performance of the AI model to which the proposed method is applied
and not. Forthermore, by evaluating the performance of the AI model applied proposed method in the real-world Security Operating
Center (SOC) environment with live network traffic, we demonstrate the applicability of the our method to the real environment.

Keywords: security monitoring, data preprocessing, machine learning, artificial intelligence, natural language processing

A Network Packet Analysis Method to Discover
Malicious Activities

Taewoong Kwon
Korea Institute of Science and Technology Information (KISTI), Daejeon,
Korea
E-mail: taewoong.kwon@kisti.re.kr

Joonwoo Myung
Korea Institute of Science and Technology Information (KISTI), Daejeon,
Korea
E-mail: joonwoo.myung@kisti.re.kr

Jun Lee
Korea Institute of Science and Technology Information (KISTI), Daejeon,
Korea
E-mail: jun.lee@kisti.re.kr

Kyu-il Kim
Korea Institute of Science and Technology Information (KISTI), Daejeon,
Korea
E-mail: kisados@kisti.re.kr

Jungsuk Song*
Korea Institute of Science and Technology Information (KISTI), Daejeon,
Korea
E-mail: song@kisti.re.kr

mailto:song@kisti.re.kr
https://orcid.org/0000-0002-2310-959X
mailto:taewoong.kwon@kisti.re.kr
https://orcid.org/0000-0002-5104-8704
mailto:joonwoo.myung@kisti.re.kr
https://orcid.org/0000-0001-6138-3971
mailto:jun.lee@kisti.re.kr
https://orcid.org/0000-0003-1967-3363
mailto:kisados@kisti.re.kr
https://orcid.org/0000-0003-1755-8636
mailto:song@kisti.re.kr

Vol.10 Special Issue

https://doi.org/10.1633/JISTaP.2022.10.S.14144

1. INTRODUCTION

With the development of network communications
technologies and the increasing number of devices con-
nected to the networks, the number of cyber threats tar-
geting them has also increased. Not only have the number
of cyber threats increased, but they are also sophisticated
and gradually accelerating in quantity using Machine
Learning (ML)/Artificial Intelligence (AI) and automation
tools. In line with the growth in cyber threats, network se-
curity technologies naturally have been studied to protect
information assets from various cyber threats. Various
security devices, such as Intrusion Detection System (IDS),
Intrusion Prevention System (IPS), Unified Threat Man-
agement (UTM), Enterprise Security Management (ESM),
and Security Information Event Management (SIEM) are
established and operated for a multi-stage defense system.
In recent years, moreover, advanced technologies using
ML and AI are especially being studied, not only to de-
tect cyber-attacks but also to automate the classification
of security events from various network security device.
However, most of these technologies cannot be used in
real environments because there are many cases where
AI models verified with high performance in previous
research show low accuracy in real environments. There
are two main reasons for this. One is that most existing
studies do not consider real environments. They mostly
use open data sets, which are usually simulation data or
outdated data sets that do not fit the current protocol
and environments. Therefore, such studies show high
performance in the given experimental data, but inevita-
bly show low performance when testing data that is not
used for learning in a real environment. The other issue
is uniformly preprocessing methods that do not consider
the characteristics of the data. Network packets have char-
acteristics of both natural language (unstructured data)
and machine language (structured data). Some of them
have only natural language (video, music, letters), others
have only machine language (IoT device signals, format-
ting files), and others have both. In particular, in the case
of web-related packets, since there are various types in-
cluding source code, file path, personal information, and
infection signals related to malicious code, appropriate
preprocessing methods that understand their characteris-
tics are required, but most existing studies do not consider
this.

In this research, we focused on the absence of a pre-
processing method. To make an AI model for real-world
monitoring, this study proposes a novel data preprocess-

ing method consisting of three steps. The three steps
consist of (1) Preserving significant special characters, (2)
Generating a stopword list, and (3) Class label refinement.
Firstly, by defining significant special characters to be pre-
served, we can prevent the semantic change that occurs
during preprocessing and preserve the performance of the
ML/AI model. A detailed description of each step is pro-
vided in Section 3. Generating and adopting stopwords
is also an important task in the packet preprocessing
since the features not related to the label are also major
impediments to model training. We defined appropriate
stopwords in consideration of the characteristics of natu-
ral language and machine language. Furthermore, we ad-
opted them to the packet. Finally, Class label refinement
is the process of correcting incorrect labels. In Security
Operating Center (SOC), because the security monitoring
agent makes a final decision to classify benign/malicious
packets, the agents can make a wrong decision by ana-
lytical ability, condition, timing, and even mistakes. This
misjudgment is a major reason of low performance when
training an AI model by labeling the same data differently,
so it is necessary to correct it. After conducting refine-
ment, we also define stopwords. We summarize the main
contributions of this paper as follows:

•	 Data consistency: It is possible to ensure a consistent
data set through label refinements so that the pro-
cess can correct incorrect labels caused by human
misjudgment.

•	 High usability in real-world: The proposed method
makes it possible to produce installable and operable
AI models with high performance in the real world
by making high-quality training data.

•	 Generalization: It can be used in combination with
other methods that utilize the payload of the packet.

The performance of the models applied proposed
method is evaluated in terms of accuracy, especially under
the real-world SOC environment with live network traf-
fic. The rest of the paper is organized as follows. Section 2
provides related work. Section 3 describes our packet pre-
processing method for ML/AI, and Section 4 discusses the
evaluation effectiveness of the proposed method. Finally,
we summarize our results and conclusions in Section 5.

2. RELATED WORKS

2.1. Intrusion Detection with ML/AI Techniques
To protect information assets from cyber threats, net-

Taewoong Kwon, et al., A Packet Analysis to Discover Malicious Activities

145

work intrusion detection has been studied for a long time.
There are many network security systems (i.e., NIDS/
NIPS, UTM, ESM, SIEM, firewall [FW], and web appli-
cation firewall [WAF]) that are developed and installed
at the entrance of an internal network. They detect and
alert to known cyber threats based on detection rulesets
(signature or pattern) (Cisco, 2018; McAfee, 2020; Open
Information Security Foundation, 2020). Network se-
curity analysts have to make detection rules rapidly and
properly, because without rules, even if it is a known at-
tack, it cannot be detected, and the damage from them
can spread. However, as cyber threats are increasingly so-
phisticated, making the detection ruleset rapidly is a chal-
lenging task for network security analysts. To overcome
the inherent limitation of a ruleset-based system, ML/AI
techniques have recently been utilized to enhance known
attack detection as well as detect unknown threats without
a ruleset. Well established ML/AI models outperformed
conventional ruleset-based systems in terms of perfor-
mance (e.g., accuracy, precision, recall, and F1-score)
(Almseidin et al., 2017; Sommer & Paxson, 2010). Besides
this, a model can be also utilized for anomaly detection,
which learns benign states and detects behaviors that
deviate from it. The study by Li et al. (2016) introduced
MVPSys, developed by them. It is an efficient system to
reduce false alarms based on a semi-supervised approach.
Recent research by Medjek et al. (2021) even considers
fault-tolerant IDS using AI algorithms to protect vulner-
able IoT environments against cyber threats. Furthermore,
an interpretable classification method (e.g., XAI) (Wang
et al., 2020) has been studied for understanding and inter-
preting how the trained ML/AI model classifies various
traffic as benign or abnormal.

2.1.1. Packet Preprocessing
Preprocessing means manipulation of data, such as

dropping, filtering, transformation, normalization, inte-
gration, cleaning, and handling of missing values, and so
on, before it is used to ensure or enhance performance,
and this is an important step in the data process. In net-
work packet analysis, since the packet structure has vari-
ous types, the process should be properly chosen accord-
ing to the purpose. Hence many existing studies related to
packet analysis have used a combination of preprocessing
methods from simple encoding (e.g., base 64, UTF8) to
word embedding (e.g., Word2Vec (Mikolov et al., 2013),
GloVe (Pennington et al., 2014), and FastText (Bojanowski
et al., 2017)) to get the results they want (Lin & Chen,
2021). As well, because the packets are used to freely

deliver messages according to predefined protocols and
machine language, they have the characteristics of natu-
ral language and machine language. Thus we can apply
natural language process (NLP) or text mining techniques
for packet preprocessing, and they have already been ap-
plied to packet analysis since the early 2000s. Word2Vec
is a representative NLP technique. It learns word term
relation in a large text corpus and can be applied to vari-
ous fields. It can be used in packet processing for security
monitoring. It is used to learn the relationship between a
word’s composition and order in true-positive (TP)/false-
positive (FP) packets to distinguish them. There are vari-
ous studies applying it, such as Packet2Vec (Goodman et
al., 2020) and TLS2Vec (Ferriyan et al., 2022), which have
been studied and utilized in security monitoring. Term-
Frequency-Inverse Document Frequency (TF-IDF) is also
a technique often used in NLP.

In packet processing, a packet is treated as a document,
and a word (or a sequence of bytes or a term) extracted
from the packet through a tokenizer or chunking algo-
rithms is treated as a word. The study by Yang et al. (2021)
proposed a distinguish method combining TF-IDF and
ML such as CNN and AdaBoost for classifying malicious
encryption traffic and normal traffic. Apart from the
Principal Component Analysis (PCA) and Linear Dis-
criminant Analysis (LDA), the Co-clustering algorithm
has also been applied as a data dimensionality reduction
technique by clustering records and fields (Banerjee et al.,
2005; Madeira & Oliveira, 2004). These techniques are
also used for preprocessing of anomaly-based intrusion
detection. Research by Kakavand et al. (2016) introduced
TMAD (Text Mining-based Anomaly Detection) using
n-gram text categorization (TC) and TF-IDF. They make
a feature through the n-gram TC and TF-IDF and show
high detection rates through it. In this way, most existing
studies use the NLP or text mining techniques for feature
extraction from simulation datasets. Yet most of these
models performed with a high performance in their test
environments but performed with low performance in
the real environment where various types of packets ex-
ist, because a batch of pre-processing methods are applied
without considering the characteristics of various types
and types of packets. In addition, since they use a natural
language-based dictionary and not a security-specialized
one, they are not also suitable for packet preprocessing. In
recent years, many studies using end-to-end learning that
does not consider such preprocessing have been made,
but they are based only on some simulation data, not real
packets captured in the real world (Chen et al., 2017; Le et

http://www.jistap.org

Vol.10 Special Issue

https://doi.org/10.1633/JISTaP.2022.10.S.14146

al., 2020).

3. PROPOSED METHOD

Data processing is one of the most important tasks to
build high performance ML/AI works. However, the data
from security devices, especially IDS/IPS events, usually
contain various types of payloads such as predefined ma-
chine language, natural language, and even both. There-
fore, the process is more burdensome and complex than
other structured data such as CSV or JSON format, and
the learning effect of ML can be maximized only by using
a data processing method that considers these character-
istics. Moreover, label inconsistency, which is a critical
attribute for ML/AI tasks, easily occurs because there are
many unexpected variables, including a wide range of ca-
reer (i.e., ability) of human agents, different decision stan-
dards and timings, complex SOC situations, and so on. To
decrease these negative biases from the security data, we
proposed the following three steps as in Fig. 1: preserving
significant special characters, generating a stopword list,
and class label refinement. More details are detailed in the
section below.

3.1. Preserving Significant Special Characters
Different from natural language, some special characters

have important meaning (e.g., file indicator, data separator,
parameter, or some evidence of threats) in payload. They
can describe relationships between two different terms and
are used as a delimiter for a specifically formatted string.
That is, if these characters are deleted according to the
same process as NLP, the original meaning of the payload
will be faded or lost; consequently, it has effect on the low
performance of the AI model. As a result, special charac-
ters with important meanings should be preserved and
suitable methods for dealing with them must be consid-
ered. We define the significant special characters to be pre-
served which are related to cyber threats or have important
information, and replace with white spaces all other special
characters except for them. Table 1 shows ten significant
characters with usage examples in payload. For instance, a
colon (:) is generally used as a delimiter that distinguishes
keys and values in the key-value structure, so that without
it, the key and the value are difficult to distinguish; how-
ever, it is easily eliminated in text mining. Moreover, at (@)
is also a typical special character used in email addresses. It
can give us some information of email related to phishing,
malicious file distribution, and other abuse behaviors; thus
it needs to be kept with an original form.

Process

Security events AI/ML dataset

Preserving significant
special character

Generating
stopword list

Class label
refinement

Source Result

Fig. 1. �Whole process of this
research. AI, Artificial
Intelligence; ML, Machine
Learning.

Table 1. Pre-defined significant special characters and usages

Character Description (Unicode) Usage in payload

@ At sign (U+0040) @hotmail.com, @gmail.com

\ Backslash (U+20A9) C:\User\passwd

- Hyphen (U+2010) Down.dll-biu, x-installer.exe, or 1=1 –

: Colon (U+003A) {id:xxx}{passwd:xxx}

% Percent (U+0025) %20%23

_ Underbar (U+005F) _0X, /system_get/

. Period (U+002E) Show.asp, shime.exe

/ Solidus (U+002F) /etc/passwd

? Question Mark (U+003F) Index.php?option=com

$ Dollar Sign (U+0024) cmd=$var

Taewoong Kwon, et al., A Packet Analysis to Discover Malicious Activities

147

These significant characters are used when defining
stopwords in Section 3.2. Terms with predefined special
characters, as well as words containing special characters,
should not be deleted in order to preserve their meaning.
More details about this are explained in Section 3.2.2.

3.2. Generating Stopword List
The purpose of generating stopwords in terms of

security classification is to both eliminate noise and pre-
serve core components to understand the meaning of
the payload. It is a very important process because the
method helps to maximize the effectiveness of learning
when learning the meaning and relationship of terms,
and it is a method often used in NLP. However, unlike the
case of general NLP, the payload is a mixture of machine
language and natural language, and its form and type are
very complex, so a domain-specific processing method is
required. In this section, we propose the novel method of
generating a stopword list considering the characteristic
of the packet. The proposed method introduced in this
section consists of two parts as shown in Fig. 2: genera-
tion and adoption. In the generation part, stopwords are
defined by calculating the weights of words and removing
statistically significant words. The adoption part describes
how to apply the stopwords generated in the generation
part. We describe the detail of parts in the section below,
respectively.

3.2.1. Term Weight Calculation
To eliminate meaningless terms, we should quantify

the importance of each term included in payloads. We can
realize the term’s importance and select stopwords through
the quantified value. TF-IDF is a well-known method to
calculate the weights of the terms. It is a traditional but
very efficient method. We also use modified TF-IDF to
calculate the weight of the terms within each event. Here
is a detailed modified TF-IDF as follows:

 𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) = 𝑓𝑓�𝑡�
|𝑑𝑑|

	 (1)

where ft,d is the raw count of a term as word t in a payload
of security event (i.e., document |d|) and |d| is the length
of document (i.e., all the number of terms in the docu-
ment). We should consider that all payloads have different
lengths, and the weights of terms should be calculated for
all payloads. So, by dividing the frequency of terms in the
document into the length of the document,

 𝐼𝐼𝐼𝐼𝐼𝐼(𝑡𝑡𝑡 𝑡𝑡) = |𝐷𝐷𝐷

1 + |{𝑑𝑑 𝑑 𝑑𝑑 𝑑 𝑑𝑑𝑑 𝑑 𝑑𝑑𝑑𝑑

	 (2)

where |D| is total number of documents D, |{d ∈ D: t ∈ d}|
is the number of payload where the term t appears, and
the denominator is adjusted with 1 to prevent division-by-
zero. Also, log is applied to prevent bias that occurs when
the number of documents is large. Finally, TF-IDF is cal-
culated by multiplying TF by IDF values as follows:

 𝑇𝑇𝑇𝑇 𝑇 𝑇𝑇𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡𝑡 𝑡𝑡) = 𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) ∙𝐼𝐼𝐼𝐼𝐼𝐼 (𝑡𝑡𝑡 𝑡𝑡)

	 (3)

After the calculation, every term in each payload has an
importance score. And then, by adding all the TF-IDF val-
ues for each term, we can get the weights of the term t in
all payloads calculated such as in Equation 4. Fig. 3 shows
all processes in this section as a table.

𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤(𝑡𝑡𝑡 𝑡𝑡) � ���� � �𝑡𝑡�(𝑡𝑡𝑡 𝑡𝑡�), (𝑑𝑑� ∈ 𝐷𝐷𝐷
���

���

	 (4)

3.2.2. Security-biased Term Elimination
After finishing term weight calculation, stopwords are

determined according to threshold k. Following the previ-
ous step, the large weight of the term means that the term
has a large effect on the payload. That is, if the weight of
a term is greater than or equal to k, it can be classified
as a meaningful term, and otherwise it is classified as a
stopword. Equation 5 shows this process, where k can be
determined by the experience of the human agent or any
other standard (e.g., Zipf’s law).

 �𝑚𝑚𝑚𝑚𝑚𝑚 �𝑚𝑚(𝑡𝑡𝑡 𝑡𝑡) ≥ 𝑘𝑘

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐

	 (5)

http://www.jistap.org

Generating
stopword list

Generation Adoption

Word weight
calculation

Security-biased
word elimination

Selective stopword
adoption

Stopword
list

Fig. 2. �Process of generating
stopword list.

Vol.10 Special Issue

https://doi.org/10.1633/JISTaP.2022.10.S.14148

Subsequently, we also remove meaningful terms, because
our purpose is to define the meaningless terms. A mean-
ingful term means that it can relate to labels or be helpful
to distinguish the payload. Consequently, it cannot be a
stopword. For eliminating these meaningful terms, we
classified the entire payloads into two groups by labels
called set B (benign) and set M (malicious). To extract
terms from each classified group, our own tokenizer is
used. The tokenizer separates terms based on spaces and
special characters, except for significant characters de-
fined in Section 3.1. Then, by comparing the extracted
terms from each group, we eliminate terms that only ap-
peared in one of the two groups. Equation 5 shows the
process of extracting candidate terms, where Tfp, Tfn is the
set of a word term (t) in a payload (i.e., document d in M
or B). M and B are sets of benign and malicious payloads,
respectively.

 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠 𝑠𝑠�� −𝑇𝑇 �� 𝑠�

𝑇𝑇�� = {𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡
𝑇𝑇�� = {𝑡𝑡𝑡𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡 𝑡 𝑡𝑡𝑡

	(6)

3.2.3. Selective Stopword Adoption
As mentioned in the previous section, the characteris-

tic of natural language and machine language should also
be considered when applying stopwords in packet prepro-
cessing. Instead of simply removing them, like NLP, they

should be replaced or eliminated depending on the type of
terms. Stopwords generated according to Section 3.2.1 and
3.2.2 can be divided into two types: terms including sig-
nificant characters or consisting of significant characters,
called a mixed type, and terms without any other special
characters, called a pure type. These two types are applied
in different ways. In case of the pure type, string match
and replace algorithm is used. If the given term from the
payload is a pure type, the stopword can be replaced with
white space through 100% string matching. For example,
if we have a stopword ‘pen’ and two given terms ‘pen’ and
‘pencil’ extracted from the payload, then, since the given
term ‘pen’ is matched to stopwords ‘pen,’ the given term
‘pen’ is eliminated from the payload. But ‘pencil’ has the
extra string ‘cil’ against stopword ‘pen’; so, it remains. In
case of a mixed type, substring matching and replace al-
gorithm is used. If the given term is a mixed type, then we
use substring match matching to find terms that contain
stopwords. For example, let us suppose ‘@gmail.com’ is the
stopword and term ‘good@gmail.com’ is extracted from
the payload. Then, we use the substring match and check
whether stopwords are included in the given term, be-
cause ‘good@gmail.com’ has significant special character
‘@.’ In this case, since ‘@gmail.com’ is a substring of ‘good@
gmail.com,’ ‘good@gmail.com’ is eliminated. In natural
language, there are cases where the meaning is changed
due to the difference of only one character (e.g., book,

[Malicious event TF/IDF matrix]

[Unlabeled event TF/IDF matrix]

Similarity calculation=
M UEi j

Mi UEj

Word term

Malicious event

M
1

M
n

UE
1

UE
2

UE
m

Word term

Unlabeled event

Term
1

Term
2

Term
3

Term
4

Term
k

Term
1

Term
2

Term
3

Term
4

Term
k

Fig. 3. Examples of TF-IDF matrices. TF-IDF, Term-Frequency-Inverse Document Frequency.

Taewoong Kwon, et al., A Packet Analysis to Discover Malicious Activities

149

cook, hook, and so on), whereas in ML, similar formats
often have similar meanings. The ‘@gmail.com’ aforemen-
tioned is an e-mail address format, so ‘good@gmail.com’
and ‘nice@gmail.com’ are different terms, but the fact that
they are e-mail addresses is the same, and they have the
same special characters and format. In this way, removing
words that have the same pattern as stopwords helps AI-
model training. Table 2 is pseudo code about stopword
adoption.

3.3. Class Label Refinement
The purpose of the class label refinement is to cor-

rect mislabeled data by various situations in SOC. In data
such as text or images, labels are clearly distinguished,
whereas payload analysis in monitoring may have differ-
ent labels depending on the analyst or situation. Hence,
it is an important thing to minimize mislabeling so that
the characteristics of each label can be revealed clearly
and the intrusion detection model can be trained well. In
SOC, mislabeling is inevitably caused by changes in the
decision basis over time, differences in the monitoring
agent’s analysis ability, and even simple mistakes. Even
where there is the same payload of security events or raw
traffic, different analysts and timing make it possible to la-
bel differently. To solve these problems, label refinement,
which is data-driven labeling, is used in this paper based
on similarity measures. Similarity analysis is performed

based on payloads previously clearly labeled as malicious
by the security monitoring agent, and payloads with simi-
larity above a threshold are classified as true-positive and
false-positive otherwise. To compare a similarity between
verified payload and other payloads, firstly all terms in the
payload are scored by the TF-IDF method used in Sec-
tion 3.2.2. But, unlike in Section 3.2.2, we divide the fre-
quency of the term into the mode value of terms, not total
number of terms, in a payload in this section, because the
similarity comparison between two payloads do not need
to consider the other payloads. That is, TF is as follows:

 𝑇𝑇𝑇𝑇(𝑡𝑡𝑡 𝑡𝑡) = 𝑓𝑓�𝑡�

max {𝑓𝑓��𝑡�: 𝑡𝑡𝑡 𝑡 𝑡𝑡𝑡

	 (7)

Each payload is considered as each document and each
term extracted from the payload is considered as each
term. After the calculation, all terms in the payload have
the importance score, and TF-IDF matrices for all payload
are formulated. Using the values on the matrix as shown
in Fig. 3, the similarity between payload, especially mali-
cious events vs. unlabeled events, is compared based on
similarity measures such as cosine similarity, Minkowski
distance, and Mahalanobis distance.

The label of the unrefined event is lastly determined
based on the similarity value with a threshold (σ) which is
examined by know-how from the agent experience as fol-
lows:

 𝑢𝑢𝑢𝑢� � 𝑖 �

1(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚), 𝑖𝑖𝑖𝑖𝑖𝑖𝑖�,� > 𝜎𝜎𝜎
0(𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑔𝑔𝑛𝑛), 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜

	 (8)

where el is the determined label for an unrefined event
e, m is a malicious event, Sm,c is a similarity value (e.g.,
cosine similarity= 𝑚𝑚 𝑚 𝑚𝑚

‖𝑚𝑚‖‖𝑒𝑒‖

), and σ is a threshold defined

by the human agent. In other words, all events will be
classified as malicious if the similarity with the malicious
events is over σ; otherwise, it will be grouped to benign.

4. EXPERIMENT AND VERIFICATION

To verify the feasibility of the proposed method, we
prepare massive IDS events as a dataset for the evaluation,
in cooperation with a real-world SOC. We utilized actual
security events collected from network security device
IDS/IPS installed in the SOC. The dataset consists of vari-
ous types of signature-based IDS/IPS events numbering
more than 100 types, excepting threshold-based events
such as scanning or flooding. Moreover, to apply the pro-
posed method, only security events with payload encoded

http://www.jistap.org

Table 2. Pseudo-code of stopword adoption

Input: �Significant Special Characters C, Stopwords S, Wordset
segmented from the payload Wi

Output: Wordset Wo removed stopwords

Wo ← Φ
for word in Wi
	 if word contained c ∈ C then
		 i = 0
		 for s in S
			 if IsSubstring(word, s) then
				 break
			 i = i+1
		 end for
		 if i == len(S)
			 Wo ← Wo ∪ word
	 else
		 if word ∉ S then
			 Wo ← Wo ∪ word
		 else
			 continue
		 end if
	 end if
end for
Return Wo

Vol.10 Special Issue

https://doi.org/10.1633/JISTaP.2022.10.S.14150

as ASCII values were selected. The detail of the dataset is
shown in Table 3.

The dataset basically includes 12 features, such as IP
(source, destination), port (source, destination), protocol,
direction, packet size, encoded payload, decoded payload,
attack type, time, and class. First, the terms are extracted
from payloads through our own tokenizer after defin-
ing the significant characters following Section 3.1. As
can be seen in Table 2, we extracted 237,949 terms from
1,1864,110 payloads, calculated TF-IDF values according
to Section 3.2, and sorted them in descending order, called
set U. To find and remove class-biased terms from set
U, we count the frequency of term appearances for each
label. As a result, label unique terms (TP: 289 terms, FP:
11,576 terms) were extracted from true-positive and false-
positives, respectively. At this time, we segmented the sen-
tences using our own tokenizer used to TF-IDF. And then,
we should also determine the threshold k to eliminate
meaningful terms. In this research, the k is determined
following Zipf’s law (Gabaix, 1999) to distinguish between
meaningful and meaningless terms. By considering the
frequency appearance and the ratio of appearances for
each term, we can decide an appropriate threshold value k
following Equation 9. In order to exclude high-frequency
words from the stopwords, after sorting in descending or-
der by word frequency, all terms with indices from 1 to k

were deleted from stopwords; we found the point k where
it exceeds 90% by calculating the cumulative distribution
function of word usage frequency.

 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟� 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓 𝑓 𝑓𝑓 𝑓 𝑓𝑓𝑓 𝑓𝑓𝑓𝑓∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �

���
∑ 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 �
���

≥ 90%}

	 (9)

Also, although not introduced in Section 3, we also ex-
cluded terms with a frequency of less than 100 from stop-
words because most of them are one-time occurrences.
After removing the label biased terms, the number of
members in set U is 226,084, the number of terms with
a frequency of less than 100 is 976, and the value of k is
5,879. In this progress, we finally defined a total of 12,052
terms as stopwords. Table 4 shows the summary of stop-
words generation.

Finally, following the experiment for identifying the
effectiveness of label refinement in Section 3.3 based on
decoded payload, we select 203 malicious security events
verified by humans who worked in the real-world SOC
carefully and calculate similarity between them and the
other events. In this process, we determine the similar-
ity measure and threshold by cosine similarity and 80%,
respectively. To experimentally find the most appropriate
similarity threshold, we select 10 types of security events
with the highest frequency appearance and surveyed the
consensus rate of human agents for true-positive events

Table 3. Detail information of IDS dataset before label refinement

Character Description (Unicode) Usage in payload

Provider Real-world SOC Name is blinded

Period 2017.01.01-2018.12.31 2 years

Type 123 signatures ASCII encoding based security events (e.g., web.)

Size 1,186,110 events Malicious: 0.0002%, Benign: 1,185,907 (99.9998%)

Class Malicious and Benign Verified by agents

Feature 12 kinds IP, Port, Payload, etc.

IDS, Intrusion Detection System; SOC, Security Operating Center.

Table 4. Change in word count by step

Step Count

of all terms 237,949

of class biased terms 11,865 (TP: 289/FP: 11,576)

of terms terms with a frequency of less than 100 976

of terms with term weight greater than k 5,879

of stopwords finally selected 12,052

TP, True-Positive; FP, False-Positive.

Taewoong Kwon, et al., A Packet Analysis to Discover Malicious Activities

151

modified labeling, according to thresholds which were
varied in 5% increments from 60 to 90, and draw the
graph; According to Fig. 4, we can see the inflection point
of graph at 80%. That is, at a threshold smaller than the
inflection point, security events are not converted to true-
positive, and at a threshold higher than the inflection
point, too many security events are converted to true-
positive. Accordingly, we determined the threshold to 80%
and subsequent experiments were performed.

As can easily be seen in Table 5, there is a significant
change in the number of security events after label refine-
ment. About 132,000 benign events are transformed as
malicious events. Totally, the dataset is reorganized con-
taining 88.84% of benign events (i.e., about 10% decrease)
and 11.16% of malicious events increased about 65,000%
from the original dataset. By refining labeling, we can
keep the label consistent and solve the imbalance of train-
ing data.

We conducted an experiment to prove the performance

of each step. To demonstrate our method, we generated
a simple DNN model by learning the data constructed
through each step. Table 6 is a confusion matrix showing
the test results of the model trained through each data. It
shows the effectiveness of each step. In Experiment 1, pre-
processing was not performed at all, and in Experiment
2, preserving significant characters and stopwords were
performed together. The two methods are closely related,
so we tested them together. Finally, in Experiment 3 label
refinement was performed. The insufficient TP training
data set was supplemented by oversampling, and a test was
conducted with 10,000 recently detected security events in
SOC. To make up for the insufficient TP data, we generat-
ed 1,000 TP data through repeated oversampling. The ex-
periments show that all metrics except precision improve
sequentially as each step is applied. Experiment 3 has the
highest score in accuracy, recall, and f1-score. Through
this, we can show the superiority of the proposed method.
Experiments 1 and 2 showed 100% precision due to overs-
ampling to replenish for insufficient TP data, whereas in
Experiment 3, after label refinement, the AI model was
unable to predict the TP labels of some data due to the
increase in the type and number of TPs. This is a problem
that would not have appeared if there were enough TP
data in advance. Since it is independent of the purpose of
this experiment, we did not deal with it in this paper.

5. CONCLUSION

In this research, we proposed the network packet
preprocessing method to build a high performance AI-
model to be operated in in real-world SOC. To make a
high-performance enough AI-model to be applied to the
real SOC, a proper packet handling method is required,
because the packets mix various formats such as machine

http://www.jistap.org

55

100

90

80

70

60

50

40

30

20

10

95

C
o
n
s
e
n
s
u
s

ra
te

(%
)

Similarity (%)

0

60 65 70 75 80 85 90

A
B
C
D
E
F
G
H
I
J

Event type

Fig. 4. Consensus rate according to the similarity threshold.

Table 5. Comparison of original and refinement dataset

Label Before After Note

Malicious 203 (0.0002%) 132,391 (11.16%) About 65,000% increase

Benign 1,185,907 (99.9998%) 1,053,719 (88.84%) About 10% decrease

Table 6. Change of the number of dataset

Experiment no. Experiment Accuracy Precision Recall F1-score

1 None 99.43% 100% 94.60% 97.23%

2 3.1 & 3.2 99.70% 100% 97.08% 98.52%

3 3.1 & 3.2 & 3.3 99.79% 99.30% 98.61% 98.95%

Vol.10 Special Issue

https://doi.org/10.1633/JISTaP.2022.10.S.14152

and natural language. To enhance the performance of the
AI model, we suggested a security-specified packet pre-
processing method consisting of preserving significant
special characters, generating a stopword list, and class
label refinement. The evaluation was performed in terms
of identifying the effectiveness of these three steps; fur-
thermore, we verified by comparing the performance of
the models generated through the training data to which
the proposed method was applied, and not. We were able
to verify the superiority of the proposed method through
the performance with accuracy measures; it was achieved
with high F1-scores, such as 98.95%, which is 1.7% more
higher accuracy over those that did not. For future work,
we will improve our similarity measure using label refine-
ment, extract stop, and critical characters. Moreover, we
will try to apply a security specified language model such
as GPT (Generative Pre-trained Transformer) (Brown et
al., 2020) or BERT (Bidirectional Encoder Representations
from Transformers) (Devlin et al., 2019) for embedding to
enhance the AI-model.

CONFLICTS OF INTEREST

No potential conflict of interest relevant to this article
was reported.

REFERENCES

Almseidin, M., Alzubi, M., Kovacs, S., & Alkasassbeh, M.
(2017, September 14-16). Evaluation of machine learning
algorithms for intrusion detection system. 2017 IEEE 15th
International Symposium on Intelligent Systems and Infor-
matics (pp. 277-282). IEEE.

Banerjee, A., Krumpelman, C., Ghosh, J., Basu, S., & Mooney,
R. J. (2005, August 21-24). Model-based overlapping clus-
tering. In R. Grossman, R. Bayardo, & K. Bennett (Eds.),
Proceedings of the eleventh ACM SIGKDD international
conference on Knowledge discovery in data mining (pp.
532-537). ACM.

Bojanowski, P., Grave, E., Joulin, A., & Mikolov, T. (2017). En-
riching word vectors with subword information. Transac-
tions of the Association for Computational Linguistics, 5,
135-146. https://doi.org/10.1162/tacl_a_00051.

Broadcom. (2013). 12Gb/s SAS: Busting through the storage
performance bottlenecks. https://docs.broadcom.com/
docs/12353459.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.,
Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell,
A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T.,

Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., . . .
Amodei, D. (2020, December 6-12). Language models are
few-shot learners. In H. Larochelle, M. Ranzato, R. Hadsell,
M. F. Balcan, & H. Lin (Eds.), Advances in Neural Infor-
mation Processing Systems 33 (NeurIPS 2020) (pp. 1877-
1901). Neural Information Processing Systems Foundation.

Chen, Y. C., Li, Y. J., Tseng, A., & Lin, T. (2017, October 8-13).
Deep learning for malicious flow detection. 2017 IEEE 28th
Annual International Symposium on Personal, Indoor, and
Mobile Radio Communications (PIMRC) (pp. 1-7). IEEE.

Cisco. (2018). Next-generation intrusion prevention system
(NGIPS). https://www.cisco.com/c/en/us/products/secu-
rity/ngips/index.html#~resources.

Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2019, June
2-7). BERT: Pre-training of deep bidirectional transformers
for language understanding. Proceedings of the 2019 Con-
ference of the North American Chapter of the Association
for Computational Linguistics: Human Language Tech-
nologies (pp. 4171-4186). Association for Computational
Linguistics.

Ferriyan, A., Thamrin, A. H., Takeda, K., & Murai, J. (2022).
Encrypted malicious traffic detection based on Word2Vec.
Electronics, 11(5), 679. https://doi.org/10.3390/electron-
ics11050679.

Gabaix, X. (1999). Zipf's law for cities: An explanation. The
Quarterly Journal of Economics, 114(3), 739-767. https://
www.jstor.org/stable/2586883.

Goodman, E. L., Zimmerman, C., & Hudson, C. (2020). Pack-
et2Vec: Utilizing Word2Vec for feature extraction in packet
data. arXiv. https://doi.org/10.48550/arXiv.2004.14477.

Kakavand, M., Mustapha, N., Mustapha, A., & Abdullah, M.
T. (2016). Effective dimensionality reduction of payload-
based anomaly detection in TMAD model for HTTP
payload. KSII Transactions on Internet and Information
Systems (TIIS), 10(8), 3884-3910. https://doi.org/10.3837/
tiis.2016.08.025.

Le, T., Wang, S., & Lee, D. (2020, November 17-20). MALCOM:
Generating malicious comments to attack neural fake news
detection models. In C. Plant, H. Wang, A. Cuzzocrea, C.
Zaniolo, & X. Wu (Eds.), 2020 IEEE International Confer-
ence on Data Mining (ICDM) (pp. 282-291). IEEE.

Li, W., Meng, W., Luo, X., & Kwok, L. F. (2016). MVPSys: To-
ward practical multi-view based false alarm reduction sys-
tem in network intrusion detection. Computers & Security,
60:177-192. https://doi.org/10.1016/j.cose.2016.04.007.

Lin, C. J., & Chen, R. M. (2021, November 24-26). An effective
preprocess for deep learning based intrusion detection. In
H. T. Yau, R. Stenzel, M. L. Shyu, & H. C. Lin (Eds.), 2021
IEEE/ACIS 22nd International Conference on Software En-

https://doi.org/10.1109/SISY.2017.8080566
https://doi.org/10.1109/SISY.2017.8080566
https://doi.org/10.1109/SISY.2017.8080566
https://doi.org/10.1109/SISY.2017.8080566
https://doi.org/10.1109/SISY.2017.8080566
https://doi.org/10.1145/1081870.1081932
https://doi.org/10.1145/1081870.1081932
https://doi.org/10.1145/1081870.1081932
https://doi.org/10.1145/1081870.1081932
https://doi.org/10.1145/1081870.1081932
https://doi.org/10.1145/1081870.1081932
https://doi.org/10.1162/tacl_a_00051
https://docs.broadcom.com/docs/12353459
https://docs.broadcom.com/docs/12353459
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://papers.nips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.1109/PIMRC.2017.8292316
https://doi.org/10.1109/PIMRC.2017.8292316
https://doi.org/10.1109/PIMRC.2017.8292316
https://doi.org/10.1109/PIMRC.2017.8292316
https://www.cisco.com/c/en/us/products/security/ngips/index.html#~resources
https://www.cisco.com/c/en/us/products/security/ngips/index.html#~resources
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
http://dx.doi.org/10.18653/v1/N19-1423
https://doi.org/10.3390/electronics11050679
https://doi.org/10.3390/electronics11050679
https://www.jstor.org/stable/2586883
https://www.jstor.org/stable/2586883
https://doi.org/10.48550/arXiv.2004.14477
https://doi.org/10.3837/tiis.2016.08.025
https://doi.org/10.3837/tiis.2016.08.025
https://doi.org/10.1109/ICDM50108.2020.00037
https://doi.org/10.1109/ICDM50108.2020.00037
https://doi.org/10.1109/ICDM50108.2020.00037
https://doi.org/10.1109/ICDM50108.2020.00037
https://doi.org/10.1109/ICDM50108.2020.00037
https://doi.org/10.1016/j.cose.2016.04.007
https://doi.org/10.1109/SNPD51163.2021.9704954
https://doi.org/10.1109/SNPD51163.2021.9704954
https://doi.org/10.1109/SNPD51163.2021.9704954
https://doi.org/10.1109/SNPD51163.2021.9704954

Taewoong Kwon, et al., A Packet Analysis to Discover Malicious Activities

153

gineering, Artificial Intelligence, Networking and Parallel/
Distributed Computing (SNPD) (pp. 118-121). IEEE.

Madeira, S. C., & Oliveira, A. L. (2004). Biclustering algorithms
for biological data analysis: A survey. IEEE/ACM Transac-
tions on Computational Biology and Bioinformatics, 1(1),
24-45. https://doi.org/10.1109/TCBB.2004.2.

McAfee. (2020). McAfee: Network security platform (IPS).
https://www.mcafee.com/enterprise/en-us/products/net-
work-security-platform/getting-started.html.

Medjek, F., Tandjaoui, D., Djedjig, N., & Romdhani, I. (2021).
Fault-tolerant AI-driven intrusion detection system for the
internet of things.  International Journal of Critical Infra-
structure Protection, 34, 100436. https://doi.org/10.1016/
j.ijcip.2021.100436.

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient
estimation of word representations in vector space. arXiv.
https://doi.org/10.48550/arXiv.1301.3781.

Open Information Security Foundation. (2020). Suricata 5.0.2,
open-source IDS/IPS/NSM engine. https://suricata-ids.org/.

Pennington, J., Socher, R., & Manning, C. (2014, October 25-

29). GloVe: Global vectors for word representation. Pro-
ceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing (EMNLP) (pp. 1532-1543).
Association for Computational Linguistics.

Sindrilaru, E. A., Peters, A. J., Adde, G. M., & Duellmann, D.
(2017). EOS developments. J Phys: Conf Ser, 898, 062032.
https://doi.org/10.1088/1742-6596/898/6/062032.

Sommer, R., & Paxson, V. (2010, May 16-19). Outside the
closed world: On using machine learning for network in-
trusion detection. In P. Kellenberger (Ed.), 2010 IEEE Sym-
posium on Security and Privacy (pp. 305-316). IEEE.

Wang, Z., Lai, Y., Liu, Z., & Liu, J. (2020). Explaining the attri-
butes of a deep learning based intrusion detection system
for industrial control networks. Sensors (Basel, Switzer-
land), 20(14), 3817. https://doi.org/10.3390/s20143817.

Yang, H., He, Q., Liu, Z., & Zhang, Q. (2021). Malicious en-
cryption traffic detection based on NLP.  Security and
Communication Networks, 2021, 9960822. https://doi.
org/10.1155/2021/9960822.

http://www.jistap.org

https://doi.org/10.1109/SNPD51163.2021.9704954
https://doi.org/10.1109/SNPD51163.2021.9704954
https://doi.org/10.1109/TCBB.2004.2
https://www.mcafee.com/enterprise/en-us/products/network-security-platform/getting-started.html
https://www.mcafee.com/enterprise/en-us/products/network-security-platform/getting-started.html
https://doi.org/10.1016/j.ijcip.2021.100436
https://doi.org/10.1016/j.ijcip.2021.100436
https://doi.org/10.48550/arXiv.1301.3781
https://suricata-ids.org/
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
http://dx.doi.org/10.3115/v1/D14-1162
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.1109/SP.2010.25
https://doi.org/10.3390/s20143817
https://doi.org/10.1155/2021/9960822
https://doi.org/10.1155/2021/9960822

