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ABSTRACT

Recently, with the development of data processing technology and the increase of computational power, methods to solving 
social problems using Artificial Intelligence (AI) are in the spotlight, and AI technologies are replacing and supplementing existing 
traditional methods in various fields. Meanwhile in Korea, heavy rain is one of the representative factors of natural disasters that 
cause enormous economic damage and casualties every year. Accurate prediction of heavy rainfall over the Korean peninsula is 
very difficult due to its geographical features, located between the Eurasian continent and the Pacific Ocean at mid-latitude, and the 
influence of the summer monsoon. In order to deal with such problems, the Korea Meteorological Administration operates various 
state-of-the-art observation equipment and a newly developed global atmospheric model system. Nevertheless, for precipitation 
nowcasting, the use of a separate system based on the extrapolation method is required due to the intrinsic characteristics 
associated with the operation of numerical weather prediction models. The predictability of existing precipitation nowcasting is 
reliable in the early stage of forecasting but decreases sharply as forecast lead time increases. At this point, AI technologies to 
deal with spatio-temporal features of data are expected to greatly contribute to overcoming the limitations of existing precipitation 
nowcasting systems. Thus, in this project the dataset required to develop, train, and verify deep learning-based precipitation 
nowcasting models has been constructed in a regularized form. The dataset not only provides various variables obtained from 
multiple sources, but also coincides with each other in spatio-temporal specifications.
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1. INTRODUCTION

Recently, approaches to solving social problems based 
on data are in the spotlight as data processing technol-
ogy develops and computational power increases. For 
example, Jha et al. (2017) reviewed and discussed the role 
of artificial intelligence (AI) approaches in the control, de-
cision, simulation, and optimization of renewable energy 
systems. Cao et al. (2018) described various deep learning 
(DL)-based applications for biomedical informatics, such 
as medical image analysis, genomic sequencing and gene 
expression analysis, and protein structure prediction. Im-
ran et al. (2014) presented a platform called Artificial In-
telligence for Disaster Response (AIDR), which filters and 
classifies messages posted to social media during humani-
tarian crises in real time. Such data-driven approaches are 
increasingly being applied in the various fields of science 
and technology, and in the recent few years, attempts have 
been made to apply them to the prediction of weather 
phenomena in which various dynamical and thermody-
namic factors interact complicatedly (e.g., Jeong et al., 
2021; Ravuri et al., 2021; Shi et al., 2015, 2017; Sønderby 
et al., 2020).

Meanwhile in Korea, heavy rain is one of the repre-
sentative factors of natural disasters that cause enormous 
economic damage and casualties every year. Accurate pre-
diction of heavy rainfall over the Korean peninsula is very 
difficult due to its geographical features, located between 
the Eurasian continent and the Pacific Ocean at mid-
latitude, and the influence of the summer monsoon (Hong, 
2004; Song et al., 2019). In addition, spatio-temporal 
fluctuations in dynamic and thermodynamic conditions 
around the Korean peninsula, due to long term climate 
change, affect the characteristics of summer rainfall, 
which may act as another factor that prevents accurate 
precipitation forecast (Ho et al., 2003).

In order to deal with such problems, the Korea Me-
teorological Administration (KMA) operates not only 
traditional meteorological instruments such as radiosonde 
for upper level observation and automatic weather station 
(AWS) for ground observation, but also state-of-the-art 
remote observation equipment such as dual polarization 
radar (Kim et al., 2012) and geostationary satellites (Chung 
et al., 2020). Meteorological products of the Geo-KOMP-
SAT 2A (GK2A) satellite launched by Korea on December 
5, 2018 provide high quality spatio-temporal observations 
with 0.5-2 km resolutions every two minutes around the 
Korean peninsula and ten minutes for the full disk area 
(Chung et al., 2020; J. H. Han et al., 2020). As well, the Ko-

rea Institute of Atmospheric Prediction Systems (KIAPS) 
has developed a new global atmospheric model system 
called the Korean Integrated Model (KIM) through a 
national project carried out from 2011 to 2019, and KIM 
has been used as an operational medium-range forecast 
model since 2020 (Hong et al., 2018; Shin et al., 2022). 

The aforementioned observation networks and the nu-
merical weather prediction (NWP) model play a pivotal 
role in weather forecasting. However, for precipitation 
nowcasting, which is very short-term rainfall prediction 
over a period from the present to about six hours ahead, 
the use of NWP raises several important issues. In order 
for the prediction results from the NWP to be utilized in 
time, the computational process of the NWP should be 
performed within at least several tens of minutes, thus 
requiring enormous computation resources. In addition, 
in order for the high-resolution NWP to predict the initia-
tion of precipitation, it is generally necessary to perform 
model integration for about three hours, and this is called 
the spin-up time. This is inherent because the high-reso-
lution NWP are initialized with coarser-resolution analy-
sis fields that cannot properly represent the physical pro-
cesses at the convective scale (Sun et al., 2014). Therefore, 
meteorological agencies in many countries around the 
world have been using extrapolation-based precipitation 
nowcasting systems such as Thunderstorm Identification, 
Tracking, Analysis and Nowcasting (TITAN) (Dixon & 
Wiener, 1993), The Corridor Integrated Weather System 
(CIWS) (Evans & Ducot, 2006; Wolfson & Clark, 2006), 
and the McGill algorithm for precipitation nowcasting by 
Lagrangian extrapolation (MAPLE) (Bellon et al., 2010; 
Germann & Zawadzki, 2002, 2004; Turner et al., 2004), 
rather than NWP for very short-term precipitation fore-
casting. 

The extrapolation-based precipitation nowcasting sys-
tems are known to provide better prediction results than 
NWPs in the early stage of forecasting (Sun et al., 2014). 
But the predictability of extrapolation-based precipita-
tion nowcasting decreases sharply as forecast lead time 
increases, and is highly vulnerable to rapidly developing 
heavy precipitation systems due to simple physical as-
sumptions such as linear growth or stationary storm mo-
tion. In this regard, several techniques recently proposed 
in the field of AI, especially DL networks that learn and 
predict temporal changes in spatial distribution, seem to 
have potential to supplement or replace traditional pre-
cipitation nowcasting systems (e.g., L. Han et al., 2020; 
Ravuri et al., 2021; Shi et al., 2015, 2017).

Accordingly, the Korea Institute of Science and Tech-
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nology Information (KISTI) constructed a specially re-
fined dataset called KISTI Dataset for Rainfall Prediction 
(KDRAP) to promote the development of a DL-based pre-
cipitation nowcasting and related advanced DL technique. 
This dataset contains multiple observational and regional 
NWP model data, and the data have been preprocessed to 
match their spatio-temporal specifications for fusion ap-
plications in the near future.

Section 2 presents the collection process of observa-
tional data for the development of DL-based precipitation 
nowcasting, and Section 3 describes the spatio-temporal 
pre-processing for the collected data and the regional 
NWP data production process for advanced applications. 
A conclusion is provided in Section 4.

2. DATA COLLECTION

To construct a dataset for the development and train-
ing of a DL-based precipitation nowcasting model, we 
established two basic conditions that the data to be col-
lected must have as follows. First, the spatial domain of 
data should cover a wide enough area to express the de-
velopment and evolution of precipitation systems over the 
Korean peninsula. Second, data should be collected for a 
period long enough for the DL-based precipitation now-
casting model to learn the complex development and evo-
lution of precipitation systems over the Korean peninsula. 

In consideration of the above conditions, composite ra-
dar reflectivity was selected as the main training data and 
the data collection period is 8 years, from 2012 to 2019. 
The data were provided by the Weather Radar Center of 
KMA. In the case of composite radar reflectivity data, the 
characteristics of the output differ depending on the com-
posite method applied, and this is mainly due to the rule 
applied when converting the reflectivity observed in 3-di-
mensional space into a 2-dimensional distribution map. 

At the time of data collection, the Hybrid Surface Rain-
fall (HSR), which corresponds to a state-of-the-art quan-
titative precipitation estimation (QPE) technique, was 
in the process of replacing the existing QPE technique, 
called Constant Altitude Plan Position Indicator (CAPPI). 
Accordingly, the production of CAPPI was stopped from 
2019, and the available period of HSR was after 2016. HSR 
is based on a two-dimensional hybrid surface consisting 
of the lowest radar bins that are not affected by ground 
clutter, beam blocking, and non-weather echoes, and it is 
known to show improved rainfall estimates in comparison 
with CAPPI (Kwon et al., 2015). Strictly speaking, there 
is a difference in quality between CAPPI and HSR, but 

it is necessary to regard them as the same type of data. If 
CAPPI and HSR are used separately due to serious con-
sideration of the quality difference between the two out-
puts, it becomes difficult to stably train a DL-based model 
using long-term data. Therefore, the two types of compos-
ite radar reflectivity data were used together for the entire 
period, and CAPPI and HSR cover the period from 2012 
to 2015 and from 2016 to 2019, respectively.

MAPLE quantitative precipitation forecast (QPF) data 
were collected to be used as verification data. The col-
lected MAPLE data provides initial and hourly forecast 
fields up to 6 hours every 10 minutes for a 1,024 km × 
1,024 km area, including the Korean peninsula. MAPLE 
is being used as a major component of operational pre-
cipitation nowcasting over Korea, and the collected data 
are expected to provide a reliable standard for diagnosing 
the performance of DL-based precipitation nowcasting 
models. The data were obtained for June, July, and August 
2017 from the Weather Radar Center of KMA.

Since radar reflectivity is a measure of the attenua-
tion of waves caused by water droplets or ice crystals in 
the atmosphere, there may be some differences from the 
precipitation observed by ground-based measurements 
such as AWS and Automated Synoptic Observing System 
(ASOS). Accordingly, ground-based observation data 
from 708 stations installed on the Korean peninsula were 
also collected in consideration of data-driven precipitation 
correction in the near future. The collected ground-based 
observation data consists of AWS and ASOS, and the 
preprocessed variables are temperature, relative humidity, 
surface pressure, sea-level pressure, and precipitation. The 
data period is from 2012 to 2019, which is identical to that 
of composite radar reflectivity, and the data were collected 
via the Open MET Data Portal (https://data.kma.go.kr).

In addition, in consideration of the possibility that AI 
technology will be applied in the future for correction of 
short-term forecast (not nowcasting) produced by NWP, 
numerical weather prediction data were also obtained by 
performing Weather Research and Forecasting (WRF) 
model 3.9.1.1 (Skamarock et al., 2008). The period of 
performing numerical prediction using WRF is June, July, 
and August from 2016 to 2018, and the detailed process 
will be introduced in Section 3.3.

3. DATA PREPROCESS

The data collected in this project include remote sens-
ing data and point observation data. Each of these data 
represents the spatio-temporal characteristics of rainfall 
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systems over the Korean peninsula, but they have differ-
ent spatio-temporal specifications from each other (Table 
1 and Fig. 1). On the other hand, for successful DL-based 
precipitation nowcasting, temporal changes of rainfall dis-
tribution must be properly learned by the DL-based mod-
el, and it is expected that the sequence-to-sequence model 
can effectively achieve that purpose. In order for the 
sequence-to-sequence model to properly learn the spatio-
temporal characteristics appearing in different data, all 
data used for training need to be configured to have a uni-
form time step and the same spatial grid structure. Since 
such preprocessing generally needs to be performed on all 
collected data at once, the task is large and formidable to 
re-execute. Therefore, it is important to reduce the pos-
sibility of erroneous preprocessing execution by establish-
ing a reasonable strategy based on the opinions of experts 
in the field.

3.1. Spatial Interpolation
The element of the spatial structure to be preprocessed 

in this dataset are grid size, number of grids in west-east 
and south-north directions, and map projection. The 
spatial grid structure of the dataset basically follows the 
spatial grid configuration of WRF, which will be described 
later. Its grid size is 1 km, and the number of grids in west-
east and south-north directions is 708 × 708. As for map 
projection, Lambert conformal conic projection, in which 
reference latitude and longitude are 36°N and 126°E, re-
spectively, and the standard parallels are 30°N and 60°N, 
was applied.

The number of grids in the west-east and south-north 
directions and grid sizes of CAPPI, HSR, and MAPLE 
were 1,153 × 1,441 (1 km), 2,305 × 2,881 (500 m), and 
1,024 × 1,024 (1 km), respectively. Therefore, the spatial 

domain of the data is larger than that of WRF, and the 
resolutions are different from each other (Fig. 1). To deal 
with this spatial grid mismatch, the data outside the WRF 
simulation area was cropped, and in the case of HSR 
with twice the resolution of other data, values for the grid 
matching the WRF domain were selected without any 
special interpolation process. 

Table 1. Collection period and spatio-temporal specifications of original and preprocessed data 

Data type Period
Horizontal grids Spatial resolution Temporal resolution Size

Org. Prep. Org. Prep. Org. Prep. Prep.

Radar CAPPI 2012-2015 1,153 × 1,441 708 × 708 1 km 1 km 10 min 1 hour 300 GB

HSR 2016-2019 2,305 × 2,881 500 m 5 min 308 GB

MAPLE 2017 1,024 × 1,024 1 km 10 min 102 GB

AWS & ASOS 2012-2019 - - 1 min 10 min 1.4 TB

WRF 2016-2018 708 × 708 1 km 10 min 10 min 18 TB

All data were preprocessed for June, July, and August of each year.
CAPPI, Constant Altitude Plan Position Indicator; HSR, Hybrid Surface Rainfall; MAPLE, McGill algorithm for precipitation nowcasting by 
Lagrangian extrapolation; AWS, automatic weather station; ASOS, Automated Synoptic Observing System; WRF, Weather Research and 
Forecasting.

Fig. 1. Spatial domain for each raw data and preprocessed data. 
Red and blue solid lines indicate the domain of original 
composited radar reflectivity (RDR) and MAPLE data, re-
spectively. Locations of AWS and ASOS are represented 
by small purple dots. The domain of preprocessed dataset 
coincident with D03 of WRF simulation is indicated by 
thick solid lines. MAPLE, McGill algorithm for precipitation 
nowcasting by Lagrangian extrapolation; AWS, automatic 
weather station; ASOS, Automated Synoptic Observing Sys-
tem; WRF, Weather Research and Forecasting.
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In the case of the ground-based point observation (i.e., 
AWS and ASOS), it has a very unbalanced location dis-
tribution. Therefore, in order to utilize these data on the 
spatial grid structure of the other data, it is inevitable to 
perform spatial interpolation. Here, the natural neighbor 
interpolation method, which is similar to the inverse dis-
tance weighted average method, but known to be much 
more sophisticated, is used (Sibson, 1981).

Through the above process, all collected data have the 
same spatial grid structure, and most importantly, the spa-
tial area of these data is large enough to learn the develop-
ment and evolution of the precipitation system over the 
Korean peninsula.

3.2. Time Integration
The time step of the final dataset was set to one hour 

by comprehensively considering the time scale of the pre-
cipitation systems and the characteristics of DL models 
related to sequence prediction (Table 1). If the time step is 
too small, that is, if the number of frames for the specific 
prediction period is too large, there is a possibility that 
effective training by DL-based models may not be con-
ducted in the later stage of sequence. 

In this process, we need to consider the physical 
characteristics of the values observed through various 
observation equipment. In the case of composited radar 
reflectivity, the temporal resolutions of CAPPI and HSR 
are 10 and 5 minutes, respectively, and the unit of data is 
dBZ. This can be converted into rainrate by the empirical 
formula shown in Eq. (1).

5 
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�����
            (1)

Rainrate with a unit of mm h-1 represents the estimated 
rainfall for a given time period, so it has a different physi-
cal meaning from the accumulated precipitation obtained 
through ground observation or numerical simulation. In 
order to resolve such differences and use radar observa-
tions with high temporal resolutions of 10 or 5 minutes 
without omission, the composited radar rainrate was 
converted into hourly accumulated precipitation through 
time integration for every hour.

In numerical simulation data, precipitation in each 
original output file indicates precipitation continuously 
accumulated from the initial integration time, so the pre-
cipitation difference between the time and one hour be-
fore is considered as the accumulated precipitation of that 
time. In the case of the ground-based point observation 
and MAPLE, no additional processing is involved since 

10-min or hourly accumulated precipitation is provided 
originally.

3.3. Construction of Auxiliary Dataset
NWP models reproduce and predict not only precipi-

tation but also complex and diverse phenomena occurring 
in the atmosphere and ocean. NWP has been gradually 
improved in performance due to an increase in compu-
tational power and advances in the sciences. However, 
perfect prediction is impossible due to the atmospheric 
characteristics in which unpredictable error growth oc-
curs even by very small perturbations and the impracti-
cality of obtaining perfect initial atmospheric conditions 
(Lorenz, 1982). Given these two conflicting situations, 
some experts believe that the predictability of NWP is 
reaching the intrinsic predictability limit (see Hoffman 
et al., 2018). On the other hand, NWP data are generally 
available for a very long period of time since operational 
NWP began in the 1950s, and the data can be easily used 
because it is well structured in time and space. Therefore, 
it is worth trying to correct and improve the prediction re-
sults of NWP through data-driven approaches, and based 
on this, the data-driven method and numerical modeling 
can establish a complementary relationship. Recently, in 
consideration of this point, we have produced NWP data 
that can be used together with radar data, and the process 
and results will be introduced here.

Numerical simulation using WRF was performed in 
three domains with grid sizes of 9- (D01), 3- (D02), and 
1-km (D03), respectively, on a 2-way nested grid system. 
The number of grids in the D01, D02, and D03 is 424 × 
424, 601 × 601, and 709 × 709, respectively, and the verti-
cal layers consist of 41 layers from the ground to 50 hPa 
with a terrain-following eta coordinate. In particular, the 
number of mass point for D03 is 708 × 708, which has the 
same map projection and grid structure as the previously 
introduced radar data. The main physics schemes applied 
to the simulation were WSM6 for microphysics (Hong & 
Lim, 2006), RRTMG for long- and short-wave radiation 
(Iacono et al., 2008), and YSU for planetary boundary 
layer (Hong et al., 2006). For cumulus parameterization, 
the Kain-Fritsch scheme was used (Kain, 2004), and it was 
applied only to D01.

The output of the numerical model contains many 
variables. These include not only physical variables, but 
also variables involved in various numerical processes. 
Simply using them all at once has the potential to cause a 
very large inefficiency in the training process of DL-based 
models. Therefore, in consideration of the efficiency of ac-

http://www.jistap.org
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tual use and the purpose of improving rainfall prediction 
by the NWP, the principal variables related to the devel-
opment of precipitation systems were selected, and they 
include pressure, sea-level pressure, wind, temperature, 
water vapor mixing ratio, and accumulated precipitation. 
In this process, 3-dimensional variables were interpolated 
to 1, 2, 3, 5, and 10 km altitudes (see Table 2). 

The simulation period is June, July, and August from 
2016 to 2018, and a 3-day prediction was performed every 
day with 00 and 12 UTC as the initial time. Thus, a total 
of 554 simulations were performed on the KISTI super-
computer Nurion.

4. CONCLUSION

Through this project, the dataset required to develop, 
train, and verify a DL-based precipitation nowcasting 
model was established in a regularized form. The raw 
data used to construct this dataset were composited ra-
dar reflectivity (CAPPI and HSR), MAPLE QPF, AWS, 
and ASOS, which were collected via the Open MET Data 
Portal and the cooperation of the KMA. Numerical simu-
lation data were produced by ourselves using the KISTI 
supercomputer Nurion.

The spatial domain of all collected data was set wide 
enough for DL-based models to learn the development of 
precipitation systems over the Korean peninsula, and the 
data preprocessing was performed to match the spatial 
structure between different data. The temporal resolution 
of the collected data was also configured to match each 
other based on comprehensive consideration of the life 
time of the precipitation systems and the characteristics of 

DL models related to sequence prediction. In the case of 
numerical simulation data, variables closely related to the 
development of the precipitation systems were selected, 
and 3-dimensional variables were vertically interpolated 
to five major altitudes. As a result, this dataset constructed 
using various raw data has an appropriate spatial range, 
grid size, and temporal resolution to develop DL-based 
precipitation nowcasting models, and all collected data 
have the same spatio-temporal specification.

Thus, by using this dataset, users can utilize various 
observational and numerical data for training and verifi-
cation of DL-based models without any specific prepro-
cessing required for each type of data. In addition, it is 
possible to efficiently try developing a new type of data-
driven model that performs prediction or correction by 
using various variables together.

This dataset (i.e., KDRAP) is planned to be released in 
the near future through the KISTI AI Data Archive (AIDA, 
https://aida.kisti.re.kr), and we hope that it will contribute 
to the advancement of data-driven disaster response abil-
ity.
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Table 2. Variables provided by the constructed dataset

Data type Variables (unit) Vertical levels

Radar 1-hour integrated rainrate (mm) Ground

MAPLE Estimated rainrate (mm h-1) Ground

AWS & ASOS 10-min accumulated rainfall (mm), sea-level pressure (hPa), surface pressure (hPa), 
temperature (°C), relative humidity (%)

Ground

WRF 2-D 1-hour accumulated rainfall (mm), sea-level pressure (hPa), terrain height (m) Ground

u-wind (m s-1), v-wind (m s-1) 10 m

temperature (K), water vapor mixing ratio (kg kg-1) 2 m

3-D pressure (hPa), u-wind (m s-1), v-wind (m s-1), w-wind (m s-1), temperature (K), water vapor 
mixing ratio (kg kg-1)

1, 2, 3, 5, and 10 km

MAPLE, McGill algorithm for precipitation nowcasting by Lagrangian extrapolation; AWS, automatic weather station; ASOS, Automated 
Synoptic Observing System; WRF, Weather Research and Forecasting.
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